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Container-based cloud applications require sophisticated auto-scaling methods in order to operate
under different workload conditions. The choice of an auto-scaling method may significantly affect
important service quality parameters, such as response time and resource utilization. Current con-
tainer orchestration systems such as Kubernetes and cloud providers such as Amazon EC2 employ
auto-scaling rules with static thresholds and rely mainly on infrastructure-related monitoring
data, such as CPU and memory utilization. This paper presents a new dynamic multi-level (DM)
auto-scaling method with dynamically changing thresholds, which uses not only infrastructure, but
also application-level monitoring data. The new method is compared with seven existing auto-
scaling methods in different synthetic and real-world workload scenarios. Based on experimental
results, all eight auto-scaling methods are compared according to the response time and the num-
ber of instantiated containers. The results show that the proposed DM method has better overall
performance under varied amount of workloads than the other auto-scaling methods. Due to satis-
factory results, the proposed DM method is implemented in the SWITCH software engineering

system for time-critical cloud applications.
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1. INTRODUCTION

Cloud computing as a pay-per-use on-demand offer has become
a preferable solution for providing various types of CPU, mem-
ory and network-intensive applications over the Internet. These
include finite element analysis [1], video streaming, gaming,
early warning systems and various other Internet of Things
(IoT) time-critical applications.
Achieving favourable quality under the conditions of dynamic-

ally varying workload intensity is essential for such applications
in order to make them useful in a business context. Taherizadeh
et al. [2] studied a range of quality metrics that can be obtained
by advanced cloud monitoring systems and can be used to
achieve high operational quality. For example, applications’
quality can be quantitatively measured by response time and
resource utilization aspects.
As the workload becomes more dynamic and varies over

time, using the lightweight container-based virtualization can
support adaptation improvements on both application perform-
ance and resource utilization aspects faster and more efficiently

than using VMs [3]. This work uses container-based virtualiza-
tion technology, particularly Docker1 and CoreOS2 for the deliv-
ery of applications in the cloud. Despite container technologies’
potential, capabilities for auto-scaling cloud-based applications
[4–11] can still be significantly improved. Inadequate auto-
scaling that is unable to address changing workload intensity
over time results in either resource under-provisioning—in
which case the application suffers from low performance—or
resource over-provisioning—in which case the utilization of
allocated resources is low. Therefore, adaptation methods are
required for fine-grained auto-scaling in response to dynamic
fluctuations in workload at runtime.
Many existing auto-scaling mechanisms use rules with fixed

thresholds, which are almost exclusively based on infrastructure-
level metrics, such as CPU utilization. This includes auto-scaling
methods employed by commercial VM-based cloud providers

1Docker, https://www.docker.com/
2CoreOS, https://coreos.com/
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such as Microsoft Azure3 and Amazon EC2,4 and open-source
container orchestrators such as Kubernetes5 and OpenShift
Origin.6 Although such methods may be useful for some basic
types of cloud applications, their performance and resource util-
ization drops when various CPU, memory and network-
intensive time-critical applications need to be used [12].
The hypothesis of the present work is that the use of high-

level metrics and dynamically specifying thresholds for auto-
scaling rules may provide for more fine-grained reaction to
workload fluctuations, and thus it can improve application
performance and a higher level of resource utilization. The
goal of this paper is, therefore, to develop a new dynamic
auto-scaling method that automatically adjusts thresholds
depending on the execution environment status observed by
advanced multi-level monitoring systems. In this way, multi-
level monitoring information that includes both infrastructure
and application-specific metrics would help the service provi-
ders accomplish satisfactory adaptation mechanisms for the
various runtime conditions.
The main contribution of this paper can be summarized as

follows: (i) introducing a multi-level monitoring framework to
meet the whole spectrum of monitoring requirements for con-
tainerized self-adaptive applications, (ii) presenting a method
to define rules with dynamic thresholds which may be
employed for launching and terminating container instances
and (iii) proposing a fine-grained auto-scaling method based
on a set of adaptation rules with dynamic thresholds.
A fine-grained auto-scaling approach continuously allocates

the optimal amount of resources needed to ensure application
performance with neither resource over-provisioning nor under-
provisioning. Such an auto-scaling method should be able to sat-
isfy application performance requirements (e.g. response time
constraints), while optimizing the resource utilization in terms of
the number of container instances, as shown in Fig. 1.
With regard to different workload patterns, it is our aim to

evaluate the proposed auto-scaling method relating to its abil-
ity to support self-adaptive cloud-based applications with a
varied number of requests at runtime. Additionally, it is our
aim to compare the new method with seven other auto-
scaling methods which are predominantly used in current
software engineering practices.
The rest of the paper is organized as follows. Section 2 pre-

sents a review of related work focusing on the auto-scaling of
VM and container-based applications. Section 3 describes mon-
itoring requirements for containerized applications. Section 4
presents the architecture of the new adaptation method in detail,
which is followed by empirical evaluation in Section 5. Section
6 contains a critical discussion of the proposed approach, while
conclusions are presented in Section 7.

2. RELATED WORK

Cloud applications and systems with auto-scaling properties
have been discussed in experience studies and are contained
in various commercial solutions. This section presents a
review of important auto-scaling methods as summarized in
Table 1. The similarities and differences among the presented
auto-scaling approaches offer an opportunity for comprehen-
sive conception of the term ‘elasticity’ within cloud-based
applications. The proposed new method called dynamic
multi-level (DM) auto-scaling is also shown for completeness
in the last row of Table 1.

2.1. Experience studies

Al-Sharif et al. [4] presented a framework called ACCRS
(Autonomic Cloud Computing Resource Scaling) to provision
a sufficient number of VMs in order to meet the changing
resource needs of a cloud-based application. The proposed
adaptation approach uses a set of fixed thresholds for CPU,
memory, and bandwidth utilization to evaluate states of
resources at runtime. The workload can be identified as a hea-
vy or lightweight if any of these attributes violate the thresh-
olds. Their resource scaling framework applies a single-level
monitoring system which measures only infrastructure-level
metrics, and hence the service response time or application
throughput does not have any role in determining the auto-
scaling actions.
Islam et al. [5] developed proactive cloud resource manage-

ment in which linear regression and neural networks have
been applied to predict and satisfy future resource demands.
The proposed performance prediction model estimates upcom-
ing resource utilization (e.g. an aggregated percentage of CPU
usage of all running VM instances) at runtime and is capable
of launching additional VMs to maximize application per-
formance. In this approach, only CPU utilization is used to
train a prediction model, and their approach does not include

FIGURE 1. Fine-grained auto-scaling of a containerized application.

3Microsoft Azure, https://azure.microsoft.com/
4Amazon EC2, https://aws.amazon.com/ec2
5Kubernetes, https://kubernetes.io/
6OpenShift Origin, https://www.openshift.org/
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other types of resources, e.g. memory. The authors propose
using a 12-minute prediction interval, because the setup time
of VM instances in general is around 5–15 minutes. This low
rate of prediction is not suitable for continuously changing
workloads. Moreover, in such proactive methods [13–16], for
each workload change, it takes too long to converge towards a
stable driven performance model, and thus the application
may provide poor quality of service (QoS) to the users during
the first stages of the learning period.
Jamshidi et al. [6] presented a self-learning adaptation

technique called FQL4KE to perform scaling actions in terms
of increment or decrement in the number of VMs. FQL4KE
applies a fuzzy control method based on a reinforcement
learning algorithm. However, in some real-world environ-
ments, the number of situations is enormous, and therefore
the reinforcement learning procedure may take too long to
converge for any new change in the execution environment.
Therefore, using reinforcement learning may become imprac-
tical due to the time constraints imposed by time-critical
applications such as early warning systems.
Arabnejad et al. [7] proposed a fuzzy auto-scaling control-

ler which can be combined with two reinforcement learning
approaches: (i) fuzzy SARSA learning (FSL) and (ii) fuzzy
Q-learning (FQL). In this work, the monitoring system col-
lects required metrics such as response time, application

throughput and the number of VMs in order to feed the auto-
scaling controller. The auto-scaling controller automatically
scales the number of VMs for dynamic resource allocations
to react to workload fluctuations. It should be noted that the
proposed architecture is usable only for a specific kind of vir-
tualization platform called OpenStack. Moreover, the control-
ler has to select scaling actions among a limited number of
possible operations. That means if a drastic increase suddenly
appears in the workload intensity, the proposed auto-scaling
system is able to add just one or two VM instances that per-
haps cannot provide enough resources to maintain an accept-
able QoS.
Tsoumakos et al. [8] introduced a resource provisioning

mechanism called TIRAMOLA to identify the number of
VMs needed to satisfy user-defined objectives for a NoSQL
database cluster. The proposed approach combines Markov
decision process (MDP) with Q-learning as a reinforcement
learning technique. It continuously decides the most advanta-
geous state which can be reached at runtime, and hence iden-
tifies available actions in each state that can either add or
remove NoSQL nodes, or do nothing. The rationale of
TIRAMOLA is acting in a predictable manner when the regu-
lar workload pattern can be identified. Therefore, previously
unseen workloads are the main barrier to quick adaptation of
the entire system to address the performance objective of

TABLE 1. Overview of various auto-scaling approaches for cloud applications.

Paper Virtualization
technology

Infrastructure-
level metrics

Application-level
metrics

Technique Adjustment
ability

Al-Sharif et al. [4] VM CPU, memory
and bandwidth

Nothing Rule-based Static

Islam et al. [5] VM CPU Response time Linear regression and
neural networks

Static

Jamshidi et al. [6] VM CPU, memory, etc Response time and
application throughput

Reinforcement learning
(Q-Learning)

Dynamic

Arabnejad et al. [7] VM Nothing Response time and
application throughput

Fuzzy logic control and
reinforcement learning

Dynamic

Tsoumakos et al. [8] VM CPU, memory,
bandwidth, etc

Response time and
application throughput

Reinforcement learning
(Q-Learning)

Static

Gandhi et al. [9] VM CPU Response time and
application throughput

Queueing model and
Kalman filtering

Dynamic

Baresi et al. [10] Container CPU and memory Response time and
application throughput

Control theory Dynamic

Horizontal Pod Auto-scaling (HPA) used
by Kubernetes

Container CPU Nothing Rule-based Static

Target Tracking Scaling (TTS) and Step
Scaling (SS) used by Amazon

VM and
container

CPU and
bandwidth

Application throughput Rule-based Static

THRESHOLD (THRES) [11] VM and
container

CPU Nothing Rule-based Static

Multiple Policies (MP) used by Google VM CPU Application throughput Rule-based Static
DM Container CPU, memory

and bandwidth
Response time and
application throughput

Rule-based Dynamic
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interactive services. Moreover, TIRAMOLA is limited to the
elasticity of a certain type of application like NoSQL data-
bases. Besides this, the monitoring part should collect client-
side statistics in addition to server-side metrics (e.g. CPU,
memory and bandwidth, query throughput, etc.). To this end,
clients need to be modified so that each one can report its
own statistics, which is not a feasible solution for many use
cases.
Gandhi et al. [9] presented a model-driven auto-scaler

called dependable compute cloud (DC2) which proactively
tends to ensure application performance to meet user-
specified requirements. The proposed approach applies a
combination of a queueing model and the Kalman filter tech-
nique to produce estimations of the average service time at
runtime. The functionality of DC2 is focused on preventing
resource under-utilization, and hence it may cause an over-
provisioning issue during execution time. Furthermore, the
Kalman filter process is iteratively continued at every 10-s
monitoring interval, it needs some time (e.g. few minutes) to
calibrate the driven model based on the monitoring data for
every new state. Accordingly, the challenge in this regard is
that the accuracy of the proposed auto-scaling approach may
decrease for special workload patterns such as a new, drastic-
ally changing scenario over time.
Baresi et al. [10] presented an auto-scaling technique that

uses an adaptive discrete-time feedback controller to enable a
containerized application to dynamically scale resources, both
horizontally and vertically. Horizontal scaling means the add-
ition or removal of container instances, while vertical scaling
represents expanding or shrinking the amount of resources
allocated to a running container. In this work, a component
called ECoWare agent should be deployed in each VM. An
ECoWare agent is responsible for the collection of container-
specific monitoring data, such as containers’ utilization of
CPU, memory, and so on. This component is also in charge
of launching or terminating a container in the VM, or chan-
ging the resources allocated to a container.

2.2. Production rule-based solutions

Currently, many commercial cloud providers (e.g. Amazon
EC2 and Google Cloud Platform), as well as container man-
agement systems (e.g. Kubernetes), provide static rule-based
auto-scaling approaches which are not flexible enough to
adjust themselves to the runtime status of the execution envir-
onment. In this subsection, we explain some important rule-
based auto-scaling solutions for the purpose of comparison to
our proposed DM method. These solutions have been chosen
for comparison to our method since they are also rule-based
and considered as advanced auto-scaling approaches, and
which are used in production systems.
Our goal is to evaluate the proposed DM method through

a set of empirical experiments which are presented in Section 5.

Figure 2 complements Fig. 1, and presents two important qual-
ity properties which are analysed by the study and lead to the
definition of a fine-grained auto-scaling approach.
Generally, a typical practice in current commercial services

is to use fixed, single-level scaling rules. For example, it is
possible to specify a CPU-based auto-scaling policy that
more VMs/containers should be launched if the average CPU
utilization is over a fixed threshold such as 80%; while some
VMs/containers may be terminated if the average CPU util-
ization is less than 80%. These settings cannot be very useful
for special workload patterns such as drastically changing
scenarios. Moreover, they lead to a stable system at 80%
resource utilization, which means 20% of resources are
wasted, which is not desirable. One of the main open chal-
lenges and significant technical issues in proposing an auto-
scaling technique is to decide to what extent the adaptation
approach should be self-adjustable to changes in the execu-
tion environment.
In our proposed auto-scaling method, both infrastructure-

level metrics (CPU, memory, etc.) and application-specific
metrics (e.g. response time and application throughput) are
the factors that dynamically influence the adjustable, auto-
scaling rules. Our proposed method is dynamic because it
uses self-adaptive rules which are employed for launching
and terminating container instances. These rules are adjusted
according to the workload intensity at runtime. It means, in
our approach, conditions when containers are initiated or ter-
minated can be different and do not need to be predefined.
In the following, we proceed with an analysis of existing

auto-scaling methods which are widely used and serve as
means for comparison with the proposed DM method.

2.2.1. Kubernetes—horizontal pod auto-scaling
Kubernetes is a lightweight container management system
able to orchestrate containers and automatically provide hori-
zontal scalability of applications. In Kubernetes, a pod is a
group of one, or a small number of containers which are
tightly coupled together with a shared IP address and port
space. One pod simply represents a single instance of an
application that can be replicated, if more instances are
needed to process the growing workload. In Kubernetes, the
horizontal pod auto-scaling (HPA) approach [17] is a control

FIGURE 2. Important quality properties of cloud-based applications
and associated metrics.
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loop algorithm principally based on CPU utilization; no mat-
ter how workload intensity or application performance is
behaving. HPA (shown in Algorithm 1) is able to increase or
decrease the number of pods to maintain an average CPU
utilization across all pods close to a desired value, e.g.
Targetcpu= 80%.
A SUM_Cluster is the grouping function used to calculate

the total sum of the cluster. The period of the Kubernetes
auto-scaler is 30 s by default, which also can be changed. At
each iteration, Kubernetes’ controller increases or decreases
the number of pods according to NoP as the output of the
HPA algorithm.

2.2.2. AWS—target tracking scaling
The Amazon EC2 AWS platform offers a target tracking scal-
ing (TTS) [18] approach, which is able to provide dynamic
adjustments based on a target value for a specific metric. This
approach applies single-level auto-scaling rules to consider
either an infrastructure-level metric (e.g. average CPU utiliza-
tion) or an application-level parameter (e.g. application
throughput per instance). To this end, a predefined target
value must be set for a metric considered in the auto-scaling
rule. Moreover, the minimum and maximum number of
instances in the cluster should be specified. TTS adds or
removes application instances as required to keep the metric
at, or close to, the specified target value.
The default configuration in AWS is capable of scaling

based upon a metric with a 5-minute frequency. This fre-
quency can be changed to 1 minute—which is known as
detailed auto-scaling option. TTS is able to increase the clus-
ter capacity when the specified metric is above the target
value, or decrease the cluster size when the specified metric is
below the target value for a specified consecutive periods e.g.
even one interval. For a large cluster, the workload is spread
over a large number of instances. Adding a new instance or
removing a running instance causes less of a gap between the

target value and the actual metric data points. In contrast, for
a small cluster, adding or removing an instance may cause a
big gap between the target value and the actual metric data
points. Therefore, in addition to keeping the metric close to
the target value, TTS should also adjust itself to minimize
rapid fluctuations in the capacity of the cluster.
For example, a rule specified as ‘TTS1 (CPU, 80%, ±1)’

can be executed to keep the average CPU utilization of the
cluster at 80% by adding or removing one instance per scal-
ing action. Moreover, the rule ‘TTS’ can also be used to
adjust the number of instances by a percentage. For instance,
a rule named ‘TTS2 (CPU, 80%, ±20%)’ adds 20% more
instances or removes 20% fewer instances, if the conditions
are satisfied. For example, if four instances are currently run-
ning in the cluster, and the average CPU utilization goes
higher than 80% during the last minute, TTS2 determines that
0.8 instance (that is 20% of four instances) should be added.
In this case, TTS rounds up 0.8 and adds one instance. Or, if
in a certain condition, TTS2 decides to remove 1.5 instances,
TTS can round down and stop only one instance.

2.2.3. AWS—step scaling
The step scaling (SS) [19] auto-scaling approach can also be
applied in AWS. For instance, if the average CPU utilization
needs to be below 80%, it is possible to define different scal-
ing steps. Figure 3a shows the first part of an AWS auto-
scaling example called ‘SS1’ to expand the capacity of the
cluster, while the workload is increasing. In this example, one
instance will be added for a modest breach (from 80% to
85%), two more instances will be instantiated for somewhat
bigger breaches (from 85% to 95%), and four instances for
CPU utilization that exceeds 95%. The ranges of step adjust-
ments should not overlap or even have a gap. In this example,
SS1 periodically calculates the 1-minute aggregated value of
the average CPU utilization from all instances. Then, if this
value exceeds 80%, SS1 compares it against the upper and
lower bounds specified by various step adjustments to decide
which action to be performed.

FIGURE 3. An AWS auto-scaling example named SS1.

Algorithm 1 Kubernetes HPA algorithm.

Inputs:
Targetcpu: Targeted per-pod CPU resource usage
CLTP: Control Loop Time Period in seconds, e.g. 30 seconds
Outputs:
NoP: Number of pods to be running

do{
Cluster = [Pod1,…, PodN];
SumCpu=SUM_Cluster(cpu_usage_of_pod1,…,
cpu_usage_of_podN);

NoP = é
ê
ê

ù
ú
ú

SumCPU

Targetcpu

wait(CLTP);
} while(true);
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Similarly, it is possible to define different steps to decrease
the number of instances running in the cluster. As an
example, Fig. 3b shows three steps to remove unnecessary
instances when the average CPU utilization falls below 50%.
In AWS, step scaling policies can be also defined on a per-

centage basis. That means to handle a growing workload at
runtime, SS is able to increase the number of instances by the
percentage of cluster size. Figure 4a shows the first part of an
AWS auto-scaling example called ‘SS2’ that includes two-
step adjustments to increase the number of instances in the
cluster by 20% and 30% of the cluster size at the respective
steps. If the resulting value is not an integer, SS2 rounds this
value. In this case, values greater than 1 are rounded down.
Values between 0 and 1 are rounded to 1. For example, if the
current number of instances in the cluster is four, adding 30%
of the cluster will result in the deployment of one more
instance. As such, 20% of four instances is 1.2 instances,
which is rounded down to 1 instance.
It is also possible to define a similar set of policies to

decrease the number of instances deployed in the cluster. In
this way, SS2 is capable of decreasing the current capacity of
the cluster by the specified percentage at different step adjust-
ments. Figure 4b shows a two-step auto-scaling to handle a
decreasing workload at runtime, and hence to reduce the
number of instances in the cluster by 20% and 30% of the
cluster size. The resulting values between 0 and −1 are
rounded to −1. Moreover, the resulting values less than −1
are rounded up. For example, −3.78 is rounded to −3.

2.2.4. THRESHOLD
THRES (Metric, UP%, DOWN%) [11] is a static single-level
auto-scaling method which horizontally adds a container
instance if an aggregated metric (e.g. average CPU or mem-
ory usage of the cluster) reaches the predefined UP% thresh-
old, and removes a container instance when it falls below the
predetermined DOWN% threshold for a default number of
successive intervals, e.g. two intervals. ‘THRES1 (CPU,
80%, 50%)’ is an example for such a static single-level auto-
scaling method.
The ‘THRES2 (CPU, 80%, 50%, RT, 190 ms)’ method

also can be defined as an example for a static multi-level

provisioning approach that is also able to consider the aver-
age response time (RT). To add a new container instance,
both the average resource utilization and response time
thresholds (in this use case, 80% and 190 ms, respectively)
should be reached for two consecutive intervals. To remove a
container from the cluster, the average CPU usage of the clus-
ter should be less than 50% during the last two periods.

2.2.5. Google—Multiple Policies
The Google Cloud Platform supports an auto-scaling mechan-
ism called ‘MP’ to use multiple auto-scaling policies individu-
ally at different levels [20]. For example, the MP auto-scaler
is able to consider two policies. One policy can be based upon
average CPU utilization of the cluster as an infrastructure-
level parameter. Another policy can be based on application
throughput of the load-balancer (ATLB) as an application-
level metric. In other words, each policy is a single-level rule
that is defined and based on only one metric. MP calculates
the number of necessary instances recommended by each pol-
icy, and then picks the policy that leaves the largest number of
instances in the cluster. This feature conservatively ensures
that the cluster always has enough capacity to handle the
workload.
In this way, a target value should be defined for each metric.

For example, ‘MP (CPU = 80%, ATLB = 80%)’ is a two-
policy method which continuously collects the average CPU
utilization of the cluster, as well as the load-balancing serving
capacity. In this example, setting a 0.8 target usage tells the
MP auto-scaler to maintain an average CPU utilization of
80% in the cluster. Moreover, MP will scale the cluster to
maintain 80% of the load-balancing serving capacity. For
instance, if the maximum load-balancing serving capacity is
defined as 100 RPS (requests per second) per instance, MP
will add or remove instances from the cluster to maintain
80% of the serving capacity, or 80 RPS per instance.

3. MONITORING CONTAINERIZED
APPLICATIONS

In comparison to traditional monitoring approaches for data-
centres, an advanced cloud monitoring system should be able
to monitor various metrics at different levels, including con-
tainer and application-level metrics, instead of only VM-level
metrics [21–24]. When designing a new auto-scaling
approach, our aim is to rely on such advanced multi-level
monitoring systems as described in the following subsections.

3.1. Container-level monitoring

If the system applies container-based virtualization instead of
VMs to use a lightweight mechanism for deploying and scal-
ing services in the cloud, container-level monitoring becomes
compulsory. A container-level monitoring system is able to

FIGURE 4. An AWS auto-scaling example named SS2.
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monitor containers and display runtime value of key attributes
including CPU, memory, and network traffic usage of each
container instances. As listed in Table 2, there are different
tools offered specifically for the purpose of monitoring con-
tainers and expose value of characteristics for a given con-
tainer at runtime.
cAdvisor7 is a system that measures, processes, aggregates

and shows monitoring data obtained from running containers.
This monitoring data can be applied as an awareness of the
performance features and resource usage of containers over
time. cAdvisor only displays monitoring information mea-
sured during the last 60 s. However, it is capable of storing
the data in an external Time Series Database (TSDB) such as
InfluxDB8 which supports long-term storage and analysis.
Besides that, Grafana9 is a Web interface to visualize large-
scale monitoring data. Using InfluxDB and Grafana on top of
the cAdvisor monitoring system could significantly improve
visualizing the monitored metrics in understandable charts for
different time periods.
Prometheus10 is a monitoring tool which includes a TSDB.

It is able to gather monitoring metrics at different intervals,
show the measurements, investigate rule expressions, and
trigger alerts when the system commences to experience
abnormal situation. However cAdvisor is considered as the
easier monitoring system to be used in comparison to
Prometheus, it has restrictions with alert management. It
should be noted that both may not be able to appropriately
offer turnkey scalability to handle large number of containers.
DUCP is a commercial solution to monitor, deploy and

manage distributed applications using Docker. Web-based
user interface and high scalability are the notable characteris-
tics of this container management solution.
Scout11 is also a container monitoring system which has a

Web interface management console, and is capable of storing
measured values taken during at most 30 days. This monitoring
solution supports alerting based on predetermined thresholds.

3.2. Application-level monitoring

Application-level monitoring, which is an open research chal-
lenge yet, measures parameters that present information about
the situation of an application and its performance; such as
response time or application throughput. Table 3 shows a list
of cloud monitoring systems which are able to measure
application-specific metrics.
Zenoss [25] is an agent-less monitoring platform based on

the SNMP protocol. This tool has an open architecture to
help consumers customize it based on their monitoring
requirements. However, it has a limited open-source version
and the full version for monitoring requires payment, so its
applicability in research is undermined.
Ganglia [26] is a scalable monitoring system for high-

performance computing environments such as clusters and
grids. This tool is generally designed to collect infrastructure-
related monitoring data about machines in clusters and display
this information as a series of graphs in a web-based interface.
It is not suitable for bulk data transfer due to the lack of conges-
tion avoidance and windowed flow control in Ganglia.
Zabbix [27] which is an agent-based monitoring solution

supports an automated alerting ability to trigger if a predeter-
mined condition happens. Zabbix is mainly implemented to
monitor network services and network parameters. As a dis-
advantage to be considered, the auto-discovery characteristic
of this monitoring system can be inefficient [28]. For example
for Zabbix, sometimes it may take almost five minutes to dis-
cover that a host is no longer running in the environment.
This restriction in time may be a serious issue for any time-
critical self-adaptation scenario.
Lattice [29], as a non-intrusive monitoring system, is mainly

implemented for monitoring highly dynamic cloud-based environ-
ments, consisting of a large number of resources. The functional-
ities of this monitoring system are the abilities for the distribution
and collection of monitoring data via either UDP protocol or
multicast addresses. Therefore, the Lattice platform is not meant
for automated alerting, visualization and evaluation [30].
JCatascopia [31] is a scalable monitoring platform which is

capable of monitoring federated clouds. This open-source moni-
toring tool is designed for server/agent architecture. Monitoring
Agents are able to measure whether infrastructure-specific

TABLE 2. Overview of container-level monitoring tools.

Tool Open Source License Scalability Alerting TSDB GUI

cAdvisor Yes Apache 2 No No No Yes
cAdvisorIGa Yes Mixed Yes No Yes Yes
Prometheus Yes Apache 2 No Yes Yes Yes
DUCPb Yes Commercial Yes Yes No Yes
Scout Yes Commercial No Yes Yes Yes

aUsing three tools together: cAdvisor (Apache 2) + InfluxDB (MIT) + Grafana (Apache 2).
bDocker Universal Control Plane (DUCP), https://docs.docker.com/ucp/

7cAdvisor, https://github.com/google/cadvisor
8InfluxDB, https://influxdata.com/time-series-platform/influxdb/
9Grafana, http://grafana.org/
10Prometheues, https://prometheus.io/
11Scout, https://scoutapp.com/
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parameters or application-level metrics, and then they send the
monitoring data to a central entity called a Monitoring Server.

3.3. The SWITCH monitoring system

The SWITCH project12 provides a software engineering plat-
form for time-critical cloud applications [12]. In order to
develop a monitoring system for SWITCH, JCatascopia has
been chosen as the baseline technology and was extended to be
able to measure container-level metrics. Each container consists
of two parts: an application instance and a Monitoring Agent.
Monitoring Agents are the actual components that collect indi-
vidual metrics’ values. Since JCatascopia is written in Java,
each container which includes a Monitoring Agent requires
some packages and a certain amount of memory for a Java vir-
tual machine (JVM) even if the monitored application running
alongside the Monitoring Agent in the container is not pro-
grammed in Java. Therefore, Monitoring Agents in the
SWITCH project have been implemented through the StatsD
protocol13 available for many programming languages such as
C/C++ and Python. Accordingly in the SWITCH platform, a
running container includes: (i) a service as application instance
and (ii) a StatsD client as a Monitoring Agent.
The functioning of the SWITCH monitoring system is illu-

strated in Fig. 5.
In Fig. 5, two different container images ( and ) have

been pulled from a local registry, and each one provides a dif-
ferent scalable service, for example Service X and Service Y.
Therefore, there are two different service clusters in this fig-
ure. Starting a new container instance of a given service
means that the service scales up, and stopping it means that it
scales down. Once a new container is instantiated, it is allo-
cated to a logical cluster. The SWITCH monitoring system
keeps track of these logical clusters for every running service.
For example, Fig. 5 shows that Cluster 1 hosts three instances
of Service X and Cluster 2 hosts two instances of Service Y.
The monitoring data streams coming from Monitoring Agents

to the Monitoring Server via the StatsD protocol are stored in a
Cassandra TSDB for the storage of series of time-ordered data
points. The SWITCH web-based interactive development envir-
onment (IDE) allows all external entities to access the

monitoring information stored in the TSDB in a unified way,
via prepared REST-based web services, APIs and diagrams.
For the SWITCH platform, a container image ( as

shown in Fig. 5) has been built to include the following three
entities: (i) a StatsD server as Monitoring Server, (ii) TSDB
and (iii) the SWITCH web-based IDE. This container image
is open-source and publically released on Docker Hub [32]. It
should be noted that it is also possible to have individual con-
tainer images for every one of these three entities. The
SWITCH monitoring system is freely available to researchers
at GitHub [33] under an Apache 2 license.

TABLE 3. Overview of application-level monitoring tools.

Tool Open Source License Scalability Alerting TSDB GUI

Zenoss Yes GPL Yes Yes Yes Yes
Ganglia Yes BSD Yes No Yes Yes
Zabbix Yes GPL Yes Yes Yes Yes
Lattice Yes Apache 2 Yes No No No
JCatascopia Yes Apache 2 Yes No Yes Yes

FIGURE 5. The SWITCH monitoring system.

12The SWITCH project, http://www.switchproject.eu/
13The StatsD protocol, https://github.com/etsy/statsd/wiki
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A Docker registry which can be installed locally is used to
store Docker images. Using a local registry makes it faster to
pull container images and run container instances of services
across cluster nodes. A local Docker registry significantly
reduces deployment latency and network overhead when run-
ning containers across the spread of host machines in a
region. Moreover, it may be possible to design deployment
strategies that make use of cached container images, thus, fur-
ther improving deployment time.

4. METHOD AND ARCHITECTURE

This study introduces a DM auto-scaling method which is
included together with the SWITCH monitoring system in a
functional architecture (shown in Fig. 6) for adaptive contain-
erized applications.
In our work, we consider that each host in a cluster is able to

include at most one container instance per service, while one
host can belong to different clusters at the same time. That
means more than one container instance can be deployed on
one host, but nevertheless they should provide different ser-
vices. This situation is a realistic case of an operational environ-
ment where different types of services should be scaled. When
a specific service is instantiated at the host, it exposes its inter-
faces at specific port numbers, which must not clash with the
port numbers of other instantiated services. Then, it makes
sense to provide an internal, so-called vertical elasticity mech-
anism for the allocation of CPU and memory resources to dif-
ferent services within the same host machine, but, it would

make no sense to instantiate additional instances of the same
service on the same host machine.
Generally, if two or more containers run on a host

machine, by default all containers will get the same propor-
tion of CPU cycles. In this situation, if tasks in one container
are idle, other containers are able to use the leftover CPU
cycles. Moreover, it is possible to modify identical propor-
tions assigned to running containers by using a relative
weighting mechanism. In such a manner, when all containers
running on a host machine attempt to use 100% of the CPU
time, the relative weights give each container access to a
defined proportion of the host machine’s CPU cycles (since
CPU cycles are limited).
When enough CPU cycles are available, all containers run-

ning on a host machine use as much CPU as they need
regardless of the assigned weights. However, there is no guar-
antee that each container will have a specific amount of CPU
time at runtime. Because the actual amount of CPU cycles
allocated to each container instance will vary depending on
the number of containers running on the same host machine
and the relative CPU-share settings assigned to containers. To
ensure that no container can starve out other containers on a
single host machine, if a running container includes a CPU-
bound service, other containers that will be deployed on that
machine should not be identified as computationally intensive
services. This principle has been adopted also for memory-
intensive applications. In this work, all containers have the
same weight to gain access to the CPU cycles and the same
limit at the use of memory. This makes it an appropriate case
of so-called horizontal scaling.

FIGURE 6. Auto-scaling architecture for adaptive container-based applications.
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The proposed architecture includes the following compo-
nents: Load-Balancer, Monitoring Agent, Monitoring Server,
TSDB, Alarm-Trigger and Self-Adapter. These are explained
in detail in the following subsections.

4.1. Load-Balancer

The Load-Balancer (e.g. HAProxy) provides high-availability
support for containerized applications by spreading requests
across multiple container instances.

4.2. Monitoring Agent, Monitoring Server, TSDB and
the SWITCH Web-based IDE

The monitoring system is able to measure both container-
level metrics (e.g. CPU and memory usage of containers) and
application-level parameters (e.g. average response time and
throughput of the application). Therefore, two types of Monitor-
ing Agents which measure container-level and application-level
metrics are included in the architecture.
The application-level Monitoring Agent is in charge of moni-

toring the Load-Balancer. Application-level metrics which are
applied in the context of the proposed auto-scaling method are
AvgRT (average response time to reply to a user’s request), AT
(application throughput which means the average number of
requests per second processed by one container instance), and
cont (number of container instances behind the Load-Balancer).
The distributed nature of our developed agent-based monitor-

ing system supports a fully interoperable, lightweight architec-
ture which quenches the runtime overhead of the whole system
to a number of Monitoring Agents. A Monitoring Agent which
is running alongside the application in a container collects indi-
vidual metrics and aggregates the measured values to be trans-
mitted to the Monitoring Server. The Monitoring Server is a
component that receives measured metrics from the Monitoring
Agents. This monitoring system is able to store measured
values in the Apache Cassandra server as TSDB.
When a container is launched, the Monitoring Agent will

automatically send the Monitoring Server a message to regis-
ter itself as a new metric stream, and then it will start collect-
ing metrics and continuously forward the measured values to
the Monitoring Server.
The SWITCH web-based IDE is also used to set primitive

thresholds needed for adaptation policies. It is also a key tool
used by software engineers to analyse events in a dynamically
changing cloud environment.

4.3. Alarm-Trigger

The Alarm-Trigger is a rule-based component which checks
the incoming monitoring data and notifies the Self-Adapter
when the system is going to experience abnormal behaviour.
The Alarm-Trigger continuously processes two functions.
One function named checking for container instantiation

(CFCI) has been defined in the Alarm-Trigger to investigate
if it is needed to start new container instances. Moreover,
another function named checking for container termination
(CFCT) has been defined in the Alarm-Trigger to evaluate if
one of the running container instances can be terminated
without any application performance degradation.
An important application-level metric which is used in the

operation of the Alarm-Trigger is the service response time. Here
we discuss how the threshold (Tres) for this metric should be set.
In order to make the system avoid any performance drop, the
value of Tres should be set more than the usual time to process a
single job without any issue when the system is not overloaded.
In the case that Tres is set very close to the value of the usual time
to process a single job, the auto-scaling method may lead to
unnecessary changes in the number of running container instances,
whereas the system is currently able to provide users an appro-
priate performance without any threat. Also, if Tres is set too
much bigger than the value of the usual time to process a single
job, the auto-scaling method will be less sensitive to application
performance and more dependent on infrastructure utilization.
Some cloud resource management systems [34–39] use the

value of 80% as the primitive threshold for the utilization of
CPU and memory (TCPU and Tmem). If the value of these two
thresholds is set closer to 100%, then the auto-scaling method
has no chance to react to runtime variations in the workload
before a performance issue arises. If the value of these two
thresholds is set less than 80%, then this may lead to an over-
provisioning problem which wastes costly resources. If the
workload trend is very even and predictable, these two thresh-
olds can be pushed higher than 80%.
According to CFCI (shown in Function 1), if one of average

CPU or memory usage of the cluster (AvgCpu or AvgMem)
exceeds the associated threshold (TCPU or Tmem, 80%) and the
average response time (AvgRT) is over Tres, the number of con-
tainers in the cluster needs to increase on demand. Involving the
average response time in this function tends to prevent ~20%
(100−TCPU or 100−Tmem) resources waste. It means there is the
possibility that the system may work at even 100% resource util-
ization without launching more containers, because the average
response time is thoroughly satisfying, or in other words, below
the Tres. In CFCI, cpu_usage_of_container and memory_usa-
ge_of_container numbered from 1 to N are the CPU and mem-
ory usage of each individual container in the cluster. For
example, cpu_usage_of_container1 is the CPU usage of the first
container, cpu_usage_of_container2 is the CPU usage of the
second container, and so forth. AVG_Cluster is the grouping
operator applied to calculate the average CPU and memory
usage of the cluster nominated as AvgCpu and AvgMem.
CFCT (shown in Function 2) has been specified to check

the feasibility of decreasing the number of running container
instances, without any QoS degradation perceived by users.
In order to improve the stability of the system and to make
sure that the system offers a favourable service quality to
end-users, it is assumed that if a container is initiated and
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added to the cluster, there should not be any container termin-
ation during the next two adaptation intervals, even if the
average CPU or memory usage of the cluster is quite low.
The Alarm-Trigger component is able to fetch a YAML file

which includes all the inputs mentioned in two aforementioned
functions (CFCI and CFCT). This YAML file is being exposed
by the SWITCH Web-based IDE via an API. Instructions for
the utilization of our implemented Alarm-Trigger component
are explained at GitHub [40] published under the Apache 2
license as a part of the SWITCH project software.

4.4. Self-Adapter

The Self-Adapter is called by the Alarm-Trigger and includes
two functions which are responsible for proposing adaptation
actions. One function named CI (Container Instantiation) is to

initiate new container instances to improve the performance
of the application. Another function named CT (Container
Termination) is in charge of possibly terminating container
instances to avoid resource over-provisioning.
The pseudocode of the proposed CI function, defined in

the Self-Adapter, is illustrated in Function 3.
CI function starts predicting the average CPU and memory

usage of the cluster with regard to ‘current number of contain-
ers,’ ‘current average resource usage of the cluster,’ and ‘the
amount of increase in the rate of throughput’ if one or more
new container instance would be added to the cluster. Based on
predicted values (PCPU and Pmem) for the average CPU and
memory usage of the cluster, the number of new containers that
need to be added to the cluster is calculated. If more than one
container instance is needed to be initiated, the Self-Adapter
runs all required containers concurrently. Therefore, the

Function 1 CFCI defined in Alarm-Trigger

Inputs:
Tcpu: Threshold for the average CPU usage of the cluster
Tmem: Threshold for the average memory usage of the cluster
Tres: Threshold for the average response time
Outputs:
If it is needed to notify the Self-Adapter in order to prevent
under-provisioning

Cluster=[Container1,…, ContainerN]
AvgCpu=AVG_Cluster(cpu_usage_of_container1,…,
cpu_usage_of_containerN);
AvgMem=AVG_Cluster(memory_usage_of_container1,…,
memory_usage_of_containerN);
if (((AvgCpu>=Tcpu) or (AvgMem>=Tmem)) and
(AvgRT>Tres)) then call ContainerInitiation(); // call CI() to
start new containers

Function 2 CFCT defined in Alarm-Trigger

Inputs:
Tcpu: Threshold for the average CPU usage of the cluster
Tmem: Threshold for the average memory usage of the cluster
Outputs:
If it is needed to notify the Self-Adapter in order to prevent
over-provisioning

Cluster=[Container1,…, ContainerN]
AvgCpu=AVG_Cluster(cpu_usage_of_container1,…,
cpu_usage_of_containerN);
AvgMem=AVG_Cluster(memory_usage_of_container1,…,
memory_usage_of_containerN);
if (((AvgCpu<Tcpu) or (AvgMem<Tmem)) and (no container
addition in the last two intervals)) then call
ContainerTermination(); // call CT() to stop one of
containers if possible

Function 3 CI defined in Self-Adapter

Inputs:
Tcpu: Threshold for the average CPU usage of the cluster
Tmem: Threshold for the average memory usage of the cluster
AvgCpu: Current average CPU usage of the cluster
AvgMem: Current average memory usage of the cluster
ATt: Application throughput in the current interval per
container
ATt-1: Application throughput in the last interval per container
ATt-2: Application throughput in the second last interval per
container
cont: Current number of running container instances in the
cluster
Outputs:
Launching new container instance(s)

inc1 ← 0;
if (AvgCpu>Tcpu) then {
do {

inc1++;

Pcpu ←
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} while (Pcpu>Tcpu);
} // end of if
inc2 ← 0;
if (AvgMem>Tmem) then {
do {

inc2++;

Pmem ←
( )æ

è

ççççç
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cont AvgMem

cont inc
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2 ;

} while (Pmem>Tmem);
} // end of if
inc ← max(inc1, inc2);
initiate_new_containers(inc); // start ‘inc’ new container(s)
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adaptation interval (the period when the next adaptation action
happens) should be set longer than a container instance’s start-
up time. In this way, if any auto-scaling event takes place, the
whole system is able to continue operating properly without
losing control over running container instances.
Here we explain how the termination of non-required con-

tainers for a CPU-intensive application happens. Let us sup-
pose that the number of containers in the cluster is two. If the
average CPU utilization of the cluster that includes these two
containers is less than ( ) a-T

2
cpu , one of the running contain-

ers should be terminated. In this formula, α is a constant with
values between 0% and 10%, which helps the auto-scaling
method conservatively make sure that the container termin-
ation will not result in an unstable situation.
Experimenting with equal workload density and computa-

tional requirements, an up to 10% difference in the average
CPU and memory usage of the cluster (AvgCpu or AvgMem)
can still be observed. This difference is a consequence of run-
time variations in running conditions that are out of the appli-
cation providers’ control. Due to this rationale, we have set
the maximum value for a at 10%.
A value of α closer to 0% may fail to provide the expected

robustness of auto-scaling methodology. Since due to minor
fluctuations in the average CPU utilization of around ( )T

2
cpu , the

system may stop a container instance at that moment, and after-
wards shortly would start a new one again. A value α closer to
10% may decrease the efficiency of the adaptation method
because, in this case, unnecessary container instances generally
have less possibility of being eliminated from the cluster.
Consequently, a higher value of a would result in longer peri-
ods of over-provisioned resources. For the experimentation in
this study, we have set the value of α to 5%, which causes nei-
ther too frequent changes in the number of running container
instances, nor excessive over-provisioning of resources.
Therefore, given that two containers are running in the clus-

ter, if the average CPU usage of the cluster is less than ( ) -80

2
=5 35 percent, it is possible to stop one of the running con-

tainers. This is so because with the current workload density
after the container termination, the average CPU utilization of the
cluster would be at most ~70%, which is less than Tcpu at 80%.
In similar fashion, it was assumed that if there are three running

containers and the average CPU usage of the cluster is under

( ) a-( - ) * T3 1

3
cpu , one of the containers could be stopped, as in

this way there would not be any performance issue.
In general, it was presumed if the current number of run-

ning containers in the cluster is cont, and the average CPU
utilization of the cluster is below bCPU defined by Equation
(1), it is possible to terminate one of the running containers in
the cluster without compromising the QoS of the application.
Moreover, for a memory-intensive application, bmem, which
is entirely similar to bCPU, helps to define the possibility of
decreasing the number of container instances in the cluster if
needed upon the memory usage, as Equation (2).

b a=
æ

è
ççç
( - ) * ö

ø
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- ( )

Tcont 1

cont
1CPU

cpu

b a=
æ

è
ççç
( - ) * ö

ø
÷÷÷ - ( )

Tcont 1

cont
2mem

mem

The pseudocode of the proposed CT function, defined in
the Self-Adapter, called by the Alarm-Trigger, is presented in
Function 4. According to the average CPU and memory
usage of the cluster, this function determines if it is necessary
to decrease the number of containers running in the cluster.

The auto-scaling method ensures the application QoS by
terminating at most one container in each adaptation interval.
In this way, after any container termination, the proposed CT
function certainly offers acceptable responses within continu-
ously changing, uncertain environments at runtime. For
example, this strategy can be used to handle on-off workload
scenarios in which peak spikes occur periodically in short
time intervals. An example of an on-off workload scenario is
shown in Fig. 7.

In these types of workload scenarios, terminating most of the
running containers at once when the number of requests
instantly decreases a lot is not an appropriate adaptation action
because more container instances running into the pool of
resources will be necessary very soon. This non-conservative
strategy may result in too many container terminations and
instantiations with the consequent QoS degradation. In other
words, the shutdown and start-up times of containers should be
taken into account during on/off workload scenarios.

Function 4 CT defined in Self-Adapter

Inputs:
Tcpu: Threshold for the average CPU usage of the cluster
Tmem: Threshold for the average memory usage of the cluster
AvgCpu: Current average CPU usage of the cluster
AvgMem: Current average memory usage of the cluster
cont: Current number of running container instances in the
cluster
α: Conservative constant to avoid an unstable situation
Outputs:
Terminating an unnecessary container instance if it is
possible

dec1 ← 0;
bCPU ← Calculate(Tcpu, cont, α);
if (AvgCpu<bCPU) then dec1 ← 1;
dec2 ← 0;
bmem ← Calculate(Tmem, cont, α);
if (AvgMem<bmem) then dec2 ← 1;
dec ← min(dec1, dec2);
if (dec==1) then terminate_one_container(); // Stop one
container
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5. RESULTS

In our empirical evaluation, the httperf14 tool has been used
to develop a load generator in order to produce various work-
load patterns for different analyses. To this end, five different
workload scenarios have been inspected, as shown in Fig. 8.
Each workload pattern examined in this work represents

different type of applications. A slowly rising/falling pattern
may imply incoming task requests sent to an e-learning sys-
tem in which daytime includes more traffic than at night. A
drastically changing pattern may represent a heavy workload
to be processed by a broadcasting news channel in which a
video or some news suddenly spreads in the social media
world. This type of system generally has a short active peri-
od, after which the service can be provided at the lowest ser-
vice level. Applications such as batch processing systems
accomplish workload scenarios similar to the on-off workload
pattern in which requests tend to be accumulated around
batch runs regularly over short periods of time. A gently
shaking pattern indicates predictable environments such as
household settings that allow application providers to specify
detailed requirements, and then allocate the exact amount of
resources to the system.
Our proposed method called the ‘DM’ auto-scaling approach

has been compared with different rule-based provisioning pol-
icies explained in Section 2.2. These approaches include HPA
(Horizontal Pod Auto-scaling), TTS1 (Target Tracking Scaling—
first method), TTS2 (Target Tracking Scaling—second method),
SS1 (Step Scaling—first method), SS2 (Step Scaling—second
method), THRES1 (THRESHOLD—first method) and THRES2
(THRESHOLD—second method). We kept the implementation
of all these auto-scaling approaches and experimental data
available at GitHub [41]. However, we did not implement MP,
as this provisioning policy is not revealed clearly in terms of
technical feasibility by Google Cloud Platform.
Each experiment has been repeated for five iterations to

find the average values of significant properties and to verify
the achieved results and hence to reach a greater validity of

results. Therefore, the reported results are mean values over
five runs for each experiment.
In every experiment, each auto-scaling method has been

investigated primarily based on the 95th percentile of the
response time, the median response time, average number of
containers, average CPU usage and average memory usage.
Since the workload trends examined in our experiments are

considered neither even nor predictable, the thresholds TCPU and
Tmem are set to 80%. Hence, the DM method will have enough
chance to react to runtime variations in the workload because these
thresholds are not very close to 100%. This fact will also prevent
an over-provisioning problem because these thresholds are not less
than 80%. The constant α is set to the value of 5 which can pre-
vent not only too frequent changes in the number of running con-
tainer instances, but also too much over-provisioning of resources
according to the rationale explained in Section 4.4.
A finite element analysis application useful for solving engin-

eering and mathematical physics problems has been developed
and containerized to be used in this work as a use case [1]. In
our use case, a single job usually takes 180ms with our experi-
mental setup in situations where the system is not overloaded.
For the DM method, in order to avoid performance drop, the
response time threshold (Tres) has been set to 190ms that is nei-
ther very close to the value of usual time to process a single job
(180ms) nor much bigger than this value. Therefore, the DM
auto-scaling method will be responsive to changes in not only
infrastructure utilization, but also application response time
because Tres is not much bigger than the usual time to process a
single job.

FIGURE 7. On-off workload pattern.

FIGURE 8. Experiment design to compare the new DM method to
existing auto-scaling methods.

14https://github.com/httperf/httperf
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When it comes to response time guarantees, determining the
difference between auto-scaling methods in capability of pro-
viding response time under different workload patterns is con-
sidered informative. To this end, as shown in Table 4, DM was
compared with all other methods using paired Student’s t-tests
with respect to all response time values over the experimental
period for each workload pattern (n = 145). The 95th percentile
value of response time, shown in Table 5, is an indicator of the
auto-scaling methods’ ability to deliver QoS according to a ser-
vice level agreement (SLA). The median response time
achieved by all investigated auto-scaling methods in every
workload pattern is shown in Table 6.
Table 7 presents the resource utilization of all auto-scaling

methods for all workload patterns in terms of average number of
containers, average CPU usage and average memory usage. In
this table, there is a column called resource utilization function
which equals to the average number of containers multiplied by
the 95th percentile of the response time achieved by auto-
scaling methods for each workload pattern. It should be noted
that in order to improve the resource utilization of an auto-
scaling method while producing acceptable response time, the
value of this function should be decreased as much as possible.

Our experiments show that the period of time taken to start
up a container instance is almost 6 s. In the experiments, the
adaptation interval, which is the time period between two pos-
sible successive adaptation events (increasing or decreasing the
number of cluster nodes), was defined as 30 s to make sure
there would be no problem if any auto-scaling action occurs.
While the monitoring interval can be specified as very short in
milliseconds, it is set to 30 s to reduce the communication traf-
fic load and any monitoring overhead for the measurements.
Table 8 shows the features of all machines used in our experi-

ments. All these machines belong to a non-profit cloud-based
infrastructure provider called ARNES (the Academic and
Research Network of Slovenia). In our experiments, all host
machines allocated to the cluster which provides the finite elem-
ent analysis application have the same hardware features. Twelve
hosts have been used in the cluster during the experiments.

5.1. Slowly rising/falling workload pattern

In this scenario as shown in Fig. 9, the workload includes
two steps. In the first step of the workload scenario, the

TABLE 4. P-values obtained by comparison of the DM method with other seven auto-scaling methods using paired t-tests with respect to all
response time values over the experimental period for each workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2

Slowly rising/falling 0.18800 0.14650 0.75633 0.00568 0.00033 0.00118 0.00009
Drastically changing 0.00055 0.00000 0.00000 0.00385 0.00000 0.00000 0.00000
On-off 0.00000 0.00191 0.00115 0.00000 0.00000 0.00000 0.00000
Gently shaking 0.00032 0.15528 0.00004 0.00051 0.63366 0.00000 0.00000
Real-world 0.00014 0.00718 0.00001 0.00000 0.00005 0.00424 0.00000

TABLE 5. The 95th percentile of the response time achieved by all investigated auto-scaling methods in every workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2 DM

Slowly rising/falling 213.07 202.40 208.21 364.70 372.90 365.20 398.90 207.40
Drastically changing 652.82 659.90 619.20 852.06 1623.14 1609.22 1270.98 410.28
On-off 471.75 386.00 387.90 683.70 493.60 550.40 566.50 232.60
Gently shaking 201.83 196.04 195.89 194.80 195.00 268.69 240.47 194.85
Real-world 204.64 208.84 214.26 202.94 233.64 215.66 260.2 197.32

TABLE 6. The median response time achieved by all investigated auto-scaling methods in every workload pattern.

Workload scenario HPA THRES1 THRES2 SS1 SS2 TTS1 TTS2 DM

Slowly rising/falling 190.6 189.6 188.7 190.7 192.9 189.6 192.1 191.2
Drastically changing 185.6 193.0 199.1 190.5 197.9 199.4 201.0 190.1
On-off 199.6 191.3 195.5 194.5 200.7 209.7 211.4 190.5
Gently shaking 189.9 186.1 188.7 187.9 184.9 196.1 196.7 185.3
Real-world 193.4 192.0 194.4 195.3 193.9 195.3 197.4 192.3
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number of incoming requests slowly rises from 100 to 1500
requests per 6 s. Afterwards, during the second step, workload
density drops smoothly from 1500 to 100 requests. Figure 9
shows that the number of containers increases in the first step
of the workload scenario, and it decreases in the second step

according to the number of arrived requests at execution time
by all eight provisioning methods.
For the slowly rising/falling workload pattern, the paired

t-tests comparing DM with HPA, THRES1 and THRES2 reveal
no statistically significant difference with P > 0.01. While all

TABLE 7. Comparing the new DM method with existing auto-scaling methods with respect to resource utilization.

Workload scenario Method Resource utilization Resource
utilization function

Average number of
containers

Average
CPU usage

Average
memory usage

Slowly rising/falling pattern DM 3.47 64.36 31.55 719.68
HPA 3.25 65.48 31.60 692.48
THRES1 3.65 62.24 31.50 738.76
THRES2 3.52 64.84 31.64 732.90
SS1 4.36 55.85 31.57 1590.09
SS2 3.84 61.86 31.73 1431.94
TTS1 3.12 71.85 31.56 1139.42
TTS2 3.32 70.78 31.58 1324.35

Drastically changing pattern DM 3.71 41.07 31.69 1522.14
HPA 2.50 50.77 31.68 1632.05
THRES1 3.31 40.72 31.58 2184.27
THRES2 3.31 40.92 31.51 2049.55
SS1 3.53 41.54 31.43 3007.77
SS2 2.47 45.22 31.68 4009.15
TTS1 2.68 45.69 31.63 4312.71
TTS2 2.68 45.84 31.71 3406.23

On-off pattern DM 3.58 53.49 31.40 832.71
HPA 2.77 66.90 31.50 1306.75
THRES1 3.39 57.25 31.55 1308.54
THRES2 3.40 58.27 31.74 1318.86
SS1 3.23 51.50 31.61 2208.35
SS2 2.71 58.53 31.72 1337.66
TTS1 2.33 64.90 31.69 1282.43
TTS2 2.33 64.65 31.70 1319.94

Gently shaking pattern DM 4.00 66.67 31.75 779.40
HPA 3.78 70.46 31.80 762.92
THRES1 4.00 66.94 31.58 784.16
THRES2 3.68 72.10 31.61 720.87
SS1 4.25 64.31 31.49 827.90
SS2 4.00 67.74 31.76 780.00
TTS1 3.41 79.25 31.62 916.23
TTS2 3.38 78.95 31.63 812.79

Real-world pattern DM 10.15 72.38 31.59 2002.80
HPA 9.20 75.81 31.55 1882.69
THRES1 9.86 71.02 31.61 2059.16
THRES2 9.98 70.32 31.56 2138.31
SS1 10.16 73.15 31.60 2061.87
SS2 9.38 74.23 31.59 2191.54
TTS1 7.27 79.09 31.60 1567.85
TTS2 7.64 75.44 31.62 1987.92
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auto-scaling approaches are able to provide acceptable perform-
ance on average, the response time offered by SS1, SS2, TTS1
and TTS2 is sometimes lowin comparison to DM, HPA,
THRES1 and THRES2. This is because the adaptation interval
used in SS1, SS2, TTS1 and TTS2 is 1 minute versus 30 s
used in DM, HPA, THRES1 and THRES2. Hence, the
response time can be inappropriate for a while in some situa-
tions if the adaptation interval is not short enough, as shown in
Fig. 10. This fact resulted in relatively weaker performance of
SS1, SS2, TTS1 and TTS2 compared to DM, HPA, THRES1
and THRES2 with regard to the 95th percentile values.
The length of the adaptation interval, whether 30 s or 1

minute, used by auto-scaling methods affects the overall
application performance. For example when t = 90 s and
before the CPU run queue would start filling up (~96%), DM
decided to allocate one new container because of the increase
in the workload. Therefore, the response time offered by DM
was not affected by the workload increase. Considering
another auto-scaling method called SS1, in such situation
when t = 120 s and after the system was overloaded as a con-
sequence of the growing workload, SS1 added four new con-
tainers to the cluster. However, at this time the processor
utilization already reached almost 100%, and hence the slow
response time was provided by SS1 for a while. Now the
cluster includes five container instances. This cluster size is
more than what is needed to handle the current workload.
Therefore, this decision is reverted after a while when t =
240 s, and two container instances are terminated.
It should be noted that DM, HPA, THRES1 and THRES2

use almost the same number of container instances and have
almost the same level of average resource utilization in terms of
CPU and memory usage for the slowly rising/falling workload
pattern. The SS1 provisioning approach allocated more con-
tainer instances (4.36) compared to all other adaptation policies.
Moreover, the authors simply concluded that the finite

element analysis application is not memory-intensive, as the
average memory usage was almost steady during the con-
ducted experiment, and the same for all auto-scaling
approaches—around ~31% of the whole memory.

5.2. Drastically changing workload pattern

Here, drastic fluctuations appear in the workload intensity. In
this experiment, shown in Fig. 11, the number of arrival

requests changes suddenly from 100 to 1500, and after a
while it instantly comes back to 100 requests again. For this
workload pattern, the paired t-tests implied that there is a stat-
istically significant difference between DM and all other
auto-scaling methods. Figure 11 shows that our proposed
method (DM) properly recognized the sudden increase in the
workload and then tried to timely initiate enough container
instances at the beginning of unexpected workload surge fas-
ter than other auto-scaling approaches. Therefore, for the
drastically changing workload pattern, DM is the only meth-
od able to provide relatively convenient performance in terms
of the 95th percentile of the response time distribution.
After a while, when the workload immediately drops again

to 100 requests per 6 s, all auto-scaling approaches, except
HPA and SS1, do not stop container instances running in the

TABLE 8. Features of infrastructures used in our experiments.

Feature Load-Balancer Monitoring Server Hosts in the cluster

OS Ubuntu 14.04 Ubuntu 14.04 Ubuntu 14.04
CPU(s) 4 2 4
CPU MHz 2397 2397 3100
Memory 16 384 MB 4096 MB 4096 MB
Speed 1000 Mbps 1000 Mbps 1000 Mbps

FIGURE 9. Dynamically changing number of container instances in
response to a slowly rising/falling workload pattern.

FIGURE 10. Average response time of the application in response
to a slowly rising/falling workload pattern.
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cluster at once, and consequently the number of containers
slightly decreases in successive intervals. The method which
provisioned more container instances than other auto-scaling
approaches was DM. The average number of containers allo-
cated by DM during this experiment was 3.71.
Figure 12 shows that the response time provided by DM,

compared to other approaches, is less inappropriately
impacted by the drastic change in the workload density.
Again, the amount of average memory usage was nearly

constant (~31% of the memory capacity), and the same for all
auto-scaling approaches during the whole conducted experi-
ment in this workload scenario, considered as further confirm-
ation of a slowly rising/falling workload scenario’s result,
implying that the conducted application is not a memory-
intensive benchmark.

5.3. On-off workload pattern

In this experiment, the on-off workload pattern has three
active periods. The active periods include, respectively, 1500,
1200 and 700 requests per 6 s (shown in Fig. 13). Inactive
periods between peak spikes are 30 s. For the on-off work-
load pattern, the paired t-tests showed a statistically signifi-
cant difference in the means of response time metric offered
by all auto-scaling methods. The only method able to timely
provision an appropriate number of container instances in
response to peak spikes is DM. Because it is more agile than
other auto-scaling approaches in order to initiate necessary
container instances at the beginning of unexpected workload
surges, and also it does not terminate most of the containers
immediately when each peak spike disappears. Consequently,
DM has allocated more container instances on average (3.58)
than other approaches during the on-off workload pattern.

The advantage of using 30-s adaptation interval instead of
one-minute interval can be understood in Fig. 13. At the
beginning of the first active period, DM and SS1 took similar
decision to increase the number of containers because of the
sudden increase in the workload. DM allocated three extra
containers starting from t = 90 s whereas SS1 allocated four
new containers when the system is already overloaded at t =
120 s, or in other words 30 s later than t = 90 s. In such situ-
ation, the competence of DM compared to SS1 exists in its
agility to timely adapt the application performance to the sud-
den increase in the workload. As a consequence, in this work-
load scenario the difference between DM and SS1 in terms of
response time can be considered enormous. That is why the

FIGURE 11. Dynamically changing number of container instances
in response to a drastically changing workload pattern.

FIGURE 12. Average response time of the application in response
to a drastically changing workload pattern.

FIGURE 13. Dynamically changing number of container instances
in response to an on-off workload pattern.
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worst response times provided by DM and SS1 during the first
active period were 225.04ms versus 558.88ms, respectively.
For the on-off workload pattern, the median and the 95th

percentile of the response time provided by DM in this
experiment were 191.2 and 232.60 ms, respectively, that can
be considered acceptable with regard to users’ satisfaction.
Whereas sudden active periods inappropriately cause an
increase in the service time of the requests for the other seven
auto-scaling methods, as shown in Fig. 14. Compared to the
DM method, the 95th percentile values of the response time
achieved by all other auto-scaling methods are very slow that
can be considered inappropriate.
In this experiment, the average memory usage was found to

be consistent (~31%) for all auto-scaling methods, and it did
not vary with the increase in the number of requests at runtime.

5.4. Gently shaking workload pattern

In this scenario, there exists a trembling workload which does
not change drastically. As shown in Fig. 15, it frequently var-
ies between 700 and 1000 requests to be processed by the
application. Figure 15 indicates that if the workload does not
change drastically, there is neither increment nor decrement
in the number of running containers for DM, THRES1 and
SS2. This is why, for this workload pattern, the paired t-tests
comparing DM with THRES1 and SS2 showed that we can-
not reject the zero hypothesis (P > 0.01), essentially meaning
that the DM method behaves the same way as the THRES1
and SS2 methods. The number of containers has also not
been changed to a great extent by other approaches namely
HPA, THRES2, SS1, TTS1, and TTS2.
The SS1 auto-scaling policy allocated more container

instances on average (4.25) than other approaches, whereas
the average response time provided by all provisioning

approaches (shown in Fig. 16) was nearly steady and identi-
cal for this workload scenario.
Therefore, allocating more container instances by SS1 in

this workload scenario undesirably caused resource under-
utilization, in terms of less average CPU resource utiliza-
tion, and reported 64.31% in comparison to what was achieved
by other methods. However, all auto-scaling approaches achieved
approximately the same level of memory usage (~31%) during
the experiment.

5.5. Real-world workload pattern

In addition to the previous workload patterns, in order to val-
idate the applicability of our proposed approach against real-
world situations, FIFA World Cup 98 workload dataset [42]
has been also applied in this work. This workload trace has
been widely used in different auto-scaling research works
[7, 43–47] so far. For our experiment, we used a 20-minute trace
(shown in Fig. 17) on the 12 July 1998 starting at 20:30:00. The
number of incoming requests per 6 s is varied between 2112
and 2858 during this time period that represents a large variance
(~750) in the workload density at runtime.
To adapt the application to the changing workload and

achieve a desired performance, the number of running container
instances allocated by auto-scaling methods varies over time.
DM and SS1 provisioned the same amount of resources in
terms of container instances on average for the real-world work-
load pattern. For both methods, the average number of contain-
ers was equal to 10.1. Other methods allocated fewer container
instances compared to DM and SS1 in this experiment.
Figure 18 shows the average response time provided by all

investigated auto-scaling methods in response to this real-
world workload pattern.

FIGURE 14. Average response time of the application in response
to an on-off workload pattern.

FIGURE 15. Dynamically changing number of container instances
in response to a gently shaking workload pattern.
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For the real-world workload pattern, the response time offered
by DM was not affected by the workload variations, since it
was quite steady in comparison to what was provided by other
approaches. In other words, there is no big difference between
the 95th percentile of the response time distribution (197.32ms)
and the median response time (192.3ms) obtained by DM.
Similar to the result concluded in previous workload pat-

terns, the experiment in this scenario also re-implies that the
memory resource utilization of the cluster does not have any
influence on the performance of the finite element analysis
application regardless of the number of incoming requests,
because, it was ~31% for all auto-scaling methods during
execution. This fact fortunately helps the cloud-based service
provider to achieve efficient memory allocation for running
container instances in advance.

For each auto-scaling method, all values of resource utilization
functions achieved in every workload pattern were summed
together to form an overall score. The scores are DM =
5856.73, HPA = 6276.89, THRES1 = 7074.89, THRES2 =
6960.49, SS1 = 9695.98, SS2 = 9750.29, TTS1 = 9218.65
and TTS2 = 8851.23. These results show that the DM auto-scaling
method is the best among eight investigated approaches. This is
because our proposed DM auto-scaling approach achieved the
minimum overall score in comparison to the other approaches. It
means that it is able to avoid over-provisioning of resources
while offering optimal application performance in terms of the
response time. Considering all workload scenarios examined in
this work, the strength of the DM method lies in its ability to
apply a multi-level monitoring framework and timely adjust
itself to changes in the workload density over time.
The cumulative distribution function (CDF) of response

time observed by all auto-scaling methods is shown from
Fig. 19 to Fig. 23 for each workload pattern. It can be con-
cluded that DM performs better than other methods as it has
higher probability to offer desired response time under varied
amount of workloads, and hence improve the application
QoS. The probability that the response time provided by DM
would be slow is approximately zero for all workload scen-
arios, except for the drastically changing pattern. Figure 20
shows that the response time provided by DM was relatively
more appropriate than other seven auto-scaling methods dur-
ing the drastically changing workload. In this workload scen-
ario, the probability of response time being fast provided by
other methods is significantly small.

6. DISCUSSION

The obtained results allow analysis of the developed auto-
scaling method and its limitations, its usability in the software

FIGURE 16. Average response time of the application in response
to a gently shaking workload pattern.

FIGURE 17. Dynamically changing number of container instances
in response to a real-world workload pattern.

FIGURE 18. Average response time of the application in response
to a real-world workload pattern.
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engineering domain, comparisons with other rule-based meth-
ods, and the level of improvement in the effectiveness of self-
adaptation for handling different workload scenarios.
An important part which has been investigated is the moni-

toring interval. Setting up an appropriate monitoring interval
is required to ensure the reliability of the whole system, to
avoid overhead, and to prevent losing control over the run-
ning environment during auto-scaling actions [48]. Defining
an effective measurement interval is a challenging task,
because a low level of measurement ratio may lead to missing
dynamic changes of operational environments, and hence the
system is not capable of adapting to a new situation to con-
tinue its operation without any performance issue.

In some cases, the difference between the monitoring inter-
val and the average response time of the application may
cause stability issues to the elasticity mechanism, which is
not the case for many applications such as finite element ana-
lysis. For example, within video conferencing systems, viola-
tions of QoS constraints need to be monitored carefully, since
even a small amount of violation should not be disregarded.
Therefore, the monitoring interval should be short enough to
adequately capture all necessary characteristics of the applica-
tion over time. Moreover, self-adaptation of such applications
also requires a high level of agility, which has recently gained
a wide range of attention as a research field that still needs to
be fully improved.

FIGURE 19. CDF of response time observed for the slowly rising/
falling workload pattern.

FIGURE 20. CDF of response time observed for the drastically
changing workload pattern.

FIGURE 22. CDF of response time observed for the gently shaking
workload pattern.

FIGURE 21. CDF of response time observed for the on-off work-
load pattern.
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The proposed method can be extended to also consider verti-
cal scaling of containers [49]. Vertical scaling is an option to
resize processing power, memory capacity, or bandwidth
assigned to container instances depending on runtime workload
variations. However, the maximum amount of resources such
as CPU or memory available for each container is limited to
the host machine capacity. Therefore, the combination of verti-
cal and horizontal scaling techniques can be applied to the
same application in order to take advantages of both mechan-
isms. However, it should be noted that some applications such
as Java/J2EE solutions [50] are not able to dynamically man-
age the memory allocation even if the memory capacity can be
resized at the infrastructure or operating system (OS) level. In
such cases, the applications have to be restarted with new
resized memory when vertical scaling occurs.
The experiments in this work are based on Docker technol-

ogy, however the proposed auto-scaling architecture can be
implemented in other containerization technologies such as
OpenVZ,15 LXC16 and lmctfy.17 This is because all functions
defined in both Alarm-Trigger and Self-Adapter, as well as
the StatsD protocol used to send, collect, and aggregate moni-
toring statistics related to any application or infrastructure, are
independent from not only container virtualization technolo-
gies, but also underlying cloud infrastructure providers.
The implemented multi-level monitoring system of the

SWITCH platform used in this work is capable of monitoring
different container-level metrics namely CPU, memory, band-
width, and disk [2]. This monitoring system has been
employed to measure bandwidth and disk for a containerized
file upload use case in our previous work [51].

Over the entire course of experimentation, different threats
to the validity of the results have been analysed as follows:

• Variations in runtime conditions (e.g. time-varying
processing delays, I/O and CPU load factors, etc.)
may slightly affect the results shown in Table 5. In
order to reach a greater validity of results, each experi-
ment on each workload pattern was repeated five times
to avoid this threat. Therefore, the reported results are
presented as average values over independent runs.

• Cloud infrastructure QoS properties, e.g. availability,
bandwidth quality etc. may vary over time, independ-
ently of the workload features. Therefore, when a con-
tainer has to be deployed on a host machine, the
application provider needs to make sure that the host
is able to fulfil the requirements of the containerized
application. To this end, the performance of infrastruc-
tures should also be continuously characterized. This
is currently facilitated by the employed multi-level
monitoring system of the SWITCH platform.

• Various additional external factors (e.g. end-users’ net-
work channel diversity, unstable network conditions at
the client’s side and the mobility of the clients) may
affect the users’ experience. In reality, cloud-based
services are being used by different end-users from all
over the world. This type of quality problems due to
connectivity issues are currently being addressed by
edge computing approaches [2].

• Proposing a container-based auto-scaling method with-
out relying on over-provisioning of resources is an
important challenge in the adaptation of cloud-based
applications. The principle which allows host machines
to include one container instance per application type
(e.g. CPU, memory, or bandwidth intensive), explained
in Section 3.3, may cause over-provisioning among
some clusters when there are applications which
experience a small number of incoming requests. To
come up with a solution to solve this limitation, in add-
ition to the containers, host machines can be also
adjusted vertically at runtime [52]. Another solution
can be using different host machines in terms of hard-
ware features allocated for each cluster according to
the application types. For example, hardware character-
istics of nodes which host a CPU-intensive application
can be different from configurations of nodes which
host a memory-intensive application. The former needs
host machines with sufficient CPU, and the later
requires host machines with enough memory.

7. CONCLUSION

Fine-grained auto-scaling mechanisms are needed to cope with
highly dynamic workloads in the cloud environment. Existing

FIGURE 23. CDF of response time observed for the real-world
workload pattern.

15OpenVZ Linux Containers, http://openvz.org
16LXC, http://www.ibm.com/developerworks/linux/library/l-lxc-containers
17lmctfy, https://github.com/google/lmctfy
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traditional application adaptation approaches using a set of fixed
rules unfortunately cannot accurately provide favourable service
quality while offering optimal resource utilization. This paper
introduced a new DM auto-scaling method which applies dynamic
rules to automatically increase or decrease the total number of
computing instances in order to accommodate varied workloads.
The proposed adaptation method innovatively uses a multi-

level monitoring system since the adaption of containerized
applications should be tuned and handled at various levels of
cloud environments—container level and application level. The
conducted experiments have demonstrated the benefits of our
approach which can be considered the best among eight investi-
gated auto-scaling methods. Particular benefits of using the pro-
posed DM method are that it avoids under-provisioning as well
as over-provisioning of resources, while it prevents QoS deg-
radation and cost overruns at execution time.
We have begun extending our proposed method towards a

multi-instance architecture and high level of service custom-
ization [53]. This architecture applies one application instance
per one user or one type of users. It means there are different
application instances for different users with various needs. In
this model, any self-adaptation mechanism would need to
consider more sophisticated options, such as setting up a new
monitoring environment for a different type of application
instance, which will add to the complexity of the adaptation
process for the application.
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