

Page 1 of 55

D4.4 Technical
documentation of the

ASAP subsystem

Software Workbench for Interactive, Time Critical and Highly self-adaptive Cloud applications

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 643963 (SWITCH project).

Start date of project: 01.02.2015. Duration: 36 months until 31.01.2018

*Dissemination Level

PU Public

CI Classified, information as referred to in Commission Decision 2001/844/EC.

CO Confidential, only for members of the consortium (including the Commission Services)

**Type

R Document, report (excluding the periodic and final reports)

DEM Demonstrator, pilot, prototype, plan designs

DEC Websites, patents filing, press & media actions, videos, etc.

OTHER Software, technical diagram, etc.

Due Date: 31st July 20172017

Delivery: 31st July 2017

Lead Partner: UL

Dissemination Level*: PU

Type**: R

Status: FINAL

Approved: All partners

Version: 1.0.1

643963– SWITCH Dissemination level: PU

Page 2 of 55

Contributors

The contributors to this deliverable are:

Contributor Role

Jernej Trnkoczy, Petar Kochovski, Vlado Stankovski Editors

Vlado Stankovski, Jernej Trnkoczy, Petar Kochovski, Salman Taherizadeh, Sandi

Gec, Uroš Paščinski, Polona Štefanič, Matej Cigale, Vlad Poenaru

Authors

Andrew Jones, George Suciu Jr. Internal reviewers

Document History

Version Date Description

V0.1 17.5.2017 TOC

V0.2 20.5.2017 First draft version

V0.3 21.5.2017 Formatted version

V0.4 30.6.2017 Contribution from all authors added

V0.5 7.7.2017 Incorporated changes proposed internally

V0.6 21.7.2017 Version for internal review

V0.7 24.7.2017 Incorporated changes suggested by CU

V0.8 25.7.2017 Incorporated changes suggested by BEIA

V1.0 27.7.2017 Minor updates; candidate version for delivery to European Commission

V1.0.1 30.7.2017 Minor updates; final version for delivery to European Commission

Keywords: Autonomous system adaptation platform, monitoring, adaptation, performance diagnosis,

knowledge base, time series database, Cloud, runtime control, time-critical applications

643963– SWITCH Dissemination level: PU

Page 3 of 55

Table of Contents

 Executive Summary ... 5

 Introduction ... 5

 ASAP architecture ... 7

 Detailed component specification ... 8

4.1 Monitoring server .. 8
4.1.1 Functionality .. 8
4.1.2 API description .. 9
4.1.3 Developed software ... 11

4.2 Monitoring Agent .. 12
4.2.1 Functionality .. 13
4.2.2 Developed software ... 13

4.3 Time Series DataBase .. 14
4.3.1 Functionality .. 14
4.3.2 API description .. 14
4.3.3 TSDB format ... 16

4.4 Alarm trigger ... 17
4.4.1 Functionality .. 18
4.4.2 API description .. 18
4.4.3 Developed software ... 21

4.5 Self-adapter Decision Maker ... 23
4.5.1 Functionality .. 23
4.5.2 Learning Classifier System .. 23
4.5.3 Generated rules used by the "Self-adapter Decision Maker" ... 26

4.6 Self-adapter Setup&Control .. 26
4.6.1 Functionality .. 26
4.6.2 API description .. 27
4.6.3 Developed software ... 35

4.7 Performance diagnose Model Generator ... 35
4.7.1 Functionality .. 35
4.7.2 Time and space complexity improvement ... 36

4.8 Knowledge Base .. 37
4.8.1 Functionality .. 37
4.8.2 API description .. 37
4.8.3 Developed software ... 39

 Testbed description ... 40

 Videoconferencing use-case .. 41

6.1 Use case description .. 41
6.2 Experiment description .. 43

6.2.1 CPU consumption .. 43
6.2.2 Bandwidth usage.. 44
6.2.3 PSNR ... 45
6.2.4 Frame latency .. 46
6.2.5 Service start-up time .. 47

 File Upload use-case .. 48

7.1 Use case description .. 48
7.2 Experiment description .. 48

7.2.1 Metrics for the QoS model .. 48

643963– SWITCH Dissemination level: PU

Page 4 of 55

7.2.2 Measurements .. 50
7.2.3 QoS model ... 52

 Summary .. 53

8.1 Software functionality in public releases ... 53
8.2 Innovation .. 53

 Bibliography ... 54

Abbreviations ... 55

643963– SWITCH Dissemination level: PU

Page 5 of 55

 Executive Summary

Deliverable D4.4 Technical documentation of the ASAP subsystem is a logical continuation of the previous

WP4 deliverables D4.1 [1], D4.2 [2] and D4.3 [3]. We present the overall architecture and detailed description

of each individual component. Their APIs and algorithms used are given. The deliverable also contains the

explanation of the ASAP functionality on two concrete time critical – File Upload and VaaS

(Videoconferencing as a Service) use cases, that were developed by UL particularly for the purpose of

demonstration.

Deliverable D4.4 therefore contains the following sections: (1) A short overview of requirements on the ASAP

subsystem, (2) the upgraded status and detailed specification of the ASAP subsystem components,(3) testbed

description, and (4) experiment descriptions with container-based applications – File Upload and VaaS. The

applications were used to gather data for the development of the learning algorithm and the strategies for self-

adaptation.

The planned work in the 3rd project year, under the WP4 included testbed enlargement, experimentation with

the developed ASAP services, further integration with the SIDE GUI. Experiments with the three industrial

SWITCH demo applications are ongoing and will be reported in other deliverables by the end of the project.

Future experiments are geared towards: fine tuning of the learning algorithms and strategies (e.g. incremental

learning from monitoring data), improvement of the ontology, which is used for the SWITCH Knowledge

Base, the development of various multi-tier (e.g. cloud-edge-fog) application design patterns and similar.

Particular focus is given to the possibility to manage Non-Functional Requirements from the SWITCH

Interactive Development Environment. For example, the HTTPS service of the File Upload application can be

annotated to execute in an edge-computing mode, which would address the requirement for fast upload. The

goal is to provide means for specification of multi-tier application patterns in the SIDE GUI, which can then

be used by the software engineer when developing time-critical component-based applications.

 Introduction

The SWITCH workbench consists of three subsystems, each taking primary responsibility for one of the three

key parts of the time-critical application lifecycle on cloud infrastructure: development, provisioning and

adaptation. The ASAP subsystem is responsible for the adaptation functionality. The notion of ‘time-critical

application’, as expressed in the original SWITCH description of work, refers specifically to applications that

must satisfy one or more response-time constraints imposed on some subset of the application's constituent

components, e.g. to respond within a certain time window to new sensor data, or to minimise the latency in

video streaming application. The adaptation of the cloud-based time-critical applications is needed for different

reasons (e.g. varying number of users, component failures etc.), nevertheless its core objective is to

continuously satisfy the QoE requirements of the application end users in the constantly changing cloud

environment. The goal is not to provide the highest possible experience, but rather to ensure stable performance

within strict boundaries in the most cost-effective manner feasible. The adaptation for a time-critical

application therefore requires careful monitoring of the host infrastructure and applications and based on this

monitoring information the system should perform appropriate adaptation strategies to satisfy the requirements

towards QoE perceived by the end users. This requires particularly robust architecture, which must take into

account all the parameters relevant for the QoE, including the number of users and/or requests it will be

receiving, the geographical location of the clients, the computational and space complexity of the problem etc.

Due to the complexity of the adaptation problem, the adaptation scope in this project was narrowed down to

event-driven adaptation. The role of event-driven adaptation is to find appropriate cloud resources and

instantiate application services that can satisfy the requested QoE level, each time a new event (i.e. service

request) occurs. The events therefore represent the need for new resources due to new service requests. For

example, in MOG application [4], when a new live-event (e.g. 2017 FIFA World Cup in India) has to be

covered, the application consisting of several services (input distributor, proxy transcoder, switcher etc.) has

to be deployed. This requires a new set of containers to be deployed, however the question is where these

643963– SWITCH Dissemination level: PU

Page 6 of 55

containers need to be started and what computational resources need to be allocated to them. Obviously, this

depends on the event context (e.g. the location of the event to cover, the number and resolution of video

cameras, etc.) and on the strategy that needs to be fulfilled (e.g. low production cost or highest video quality

etc.). To determine appropriate VMs where Docker containers will be instantiated, ASAP couples event

context with an appropriate performance model, which represents the strategy selected by the service user.

Each time an event needs to be served, the following phases need to be performed: (1) context capturing, (2)

decision making, (3) container deployment, (4) actual service that is serving the event (Figure 2-1) and (5) the

destruction of the service when the event is over.

Figure 2-1 Phases in the ASAP subsystem adaptation to time-critical events process.

This approach, of course, assumes that (1) serving each and every time-critical event requires specific tailoring

of the application components and choice of the Cloud provider (based on the identified context), and (2) the

services serving a time-critical event do not require further adaptation during the application runtime. The only

runtime adaptation of the application covered by ASAP is due to component failure. In this case, a new

instantiated container replaces the failed service. With our event-driven approach it should be possible to

reduce the operational cost of the service, since there will be no idle hosts at any time. Additionally, elasticity

to a varying number of users will be achieved automatically.

The role of ASAP subsystem is therefore to select the appropriate infrastructure and deploy the application

containers such that during the runtime the appropriate QoE levels will be achieved. During the application

runtime (which serves the one-at-a-time event), the application is non-intrusively monitored, and in case of

failure detection a new component is immediately instantiated, the users are notified and their application can

be re-launched. It is important to note that due to complexity growing exponentially with the number of

services composing the application (i.e. the number of containers) ASAP took the approach of “model per

component” – this means that the performance models are not made for the entire application, but rather for

each individual component separately. In other word - we assume that all of the components of the application

are running on the same VM and they share resources of this VM. It is also important to note that we

implemented only one model, representing the “best QoE” strategy, in which the goal of the VM selection is

to provide the best possible Quality of Experience to the end users.

In the process of adaptation, the decision-making phase is particularly important. In ASAP decision-making

represents the selection of the appropriate VM where the service instance will be instantiated for a specific

event. The decision-making phase is composed of two steps: 1) filtering and 2) selection based on monitored

data and decision model representing the strategy. Filtering is necessary to reduce a huge number of potential

host VMs to a smaller subset of “suitable” VMs. The filtering is based on user-specified requirements and

provided application context. These are provided in a form of rules (e.g. the VM has to have more than 1GB

RAM and more than 2vCPU cores and should be located on the same continent as users) which are then

checked against all the potential host VMs descriptions in the Knowledge Base. The filtering is needed to

reduce the number of potential candidates to only a few VMs, where monitoring can be started in real-time

and the best of the VMs according to the decision model is selected.

In order to support the above-mentioned event-driven adaptation a suitable ASAP architecture, consisting of

several ASAP components was established. The architecture and the detailed specification of individual

components are described in the following chapters.

643963– SWITCH Dissemination level: PU

Page 7 of 55

 ASAP architecture

The ASAP subsystem has several components that are required for its operation. In Figure 3-1 we present a

high-level overview of the components and their interconnections.

Figure 3-1 Architecture of the ASAP subsystem

Furthermore, the architecture of ASAP can be divided in roughly four different subsystems: 1) monitoring 2)

adaptation logic 3) setup & control and 4) data storage.

The monitoring subsystem is responsible for monitoring the current state of the system. It represents the

baseline of any autonomous system. In SWITCH, the monitoring system consists of Monitoring Server,

Monitoring Agent and Alarm-Trigger. These will be specified in sections Error! Reference source not found.

and 4.4. The data collected by the monitoring system has three functions. First, it is used as input to real-time

Alarm-Trigger (section 4.4) component that is constantly monitoring the state of the application and raises an

alarm in case of component failures. Second, the collected monitoring data is used by the Model Generator

and Model Updater that analyse the monitored application and provides the up-to-date model representing a

specific user-defined strategy. Third, the monitoring data is used by the Decision Maker component, which

decides on which VM to instantiate the service(s) serving the event.

Figure 3-2 Decision making process

The adaptation logic is responsible for calculating the model(s) representing user-defined strategy(ies) for the

adaptation, and based on the calculated model(s) performing the decision where to instantiate the service that

will serve particular event. It is composed of three components. Model Generator (section Error! Reference

source not found.) generates the models of the application according to the user-selected strategy. Model

Updater (section Error! Reference source not found.) is using the monitoring data in order to decide when

to update the model, which is needed due to the changes in the environment. Decision Maker (section Error!

Reference source not found.) is the component that selects the appropriate VM where the services serving

643963– SWITCH Dissemination level: PU

Page 8 of 55

particular event will be instantiated. The process (Figure 3-2) of selection is composed of two steps, filtering

and selection. The filtering is based on the measurements done during the infrastructure level real time

monitoring process. Furthermore, geolocation might be used as additional filtering constraint, because it may

provide an approximation for network based metrics that influence the QoS [5] [6]. As a result, a subset of the

closest VMs to the user is created. The selection follows the filtering process. It obtains the QoS model and

measurements such as the jitter, latency, packet loss and estimated throughput. The measurements and the QoS

model are is used to rank the VMs and select the best VM where the service can be instantiated.

Setup & control part of the ASAP subsystem (section 3) is responsible for the actual services deployment.

When the adaptation logic determines the virtual (or physical) machine where the services need to be deployed,

the Setup & Control component calls appropriate Kubernetes Cluster API and initiates the starting of the

appropriate Kubernetes Pods in which the containers representing the services are running. When the event is

over this component needs to destruct the created services.

The Data Storage of ASAP is composed of TSDB and the Knowledge Base (section 4.8). While TSDB stores

the real-time monitoring, metrics values, the KB is responsible for inter-entity relationships, constraints and

complex data analysis mechanisms.

 Detailed component specification

4.1 Monitoring server

In the SWITCH project, there is one Monitoring Server for each application. Monitoring Server is a component

that receives measured metrics from the Monitoring Agent [7]. Moreover, for each application environment,

there is one Monitoring Agent, which consists of on StatsD and one Monitoring Adapter. The Monitoring

Agent includes two entities: (I) StatsD and (II) Monitoring Adapter. Monitoring Adapter is the actual

component that aggregates individual metrics’ values via StatsD and submits all monitoring data to the

Monitoring Server. The Monitoring Server can to recognize all running containers based on the measured

metrics. It receives all measured metrics associated with the running containers and then stores them into a

database.

Figure 4-1 Overview of the Monitoring System for the SWITCH workbench

4.1.1 Functionality

In order to develop a monitoring system to measure metrics, JCatascopia [8], which is a VM-based monitoring

system has been chosen as baseline technology, which was extended in this work to fulfil the requirements of

containerized applications, and having Alarm-Trigger component. Monitoring Server is the key component,

which obtains the monitoring data transmitted by the Monitoring Agent in the application environment. In the

application environment, there could be more than one type of component as an application may have different

containerized services. For example, in the BEIA use case, there are two virtualized components: the CC Server

643963– SWITCH Dissemination level: PU

Page 9 of 55

and the DB Server. Therefore, the Monitoring Server receives all monitoring data that could consist of different

monitoring types. For example, for the containers with type A, the monitoring data could be the CPU and

memory resource utilisation, and for the containers with type B, the monitoring data could be the response

time of the associated service. Therefore, the Monitoring Server receives all the monitoring data that belongs

to running containers and the stores these measured values into a database. Each must contain the information

about the IP address of the container, metric name and metric value.

Before the deployment of containers, which are providing the service, the Monitoring Server should be

instantiated and ready to register the containers and receive measured data. Each user of the SWITCH

workbench can have a Monitoring Server for its own running application wherever it is required. To this end,

the following command can be executed by container management systems such as Kubernetes.

docker run -p 8080:8080 -p 4242:4242 -p 4245:4245 -p 7199:7199 -p 7000:7000 -p 7001:7001 -p 9160:9160 -p 9042:9042
-p 8012:8012 -p 61621:61621 salmant/monitoring_server_container_image

After running the Monitoring Server, containers cancan register themselves in it via the Monitoring Agent and

start working. Running containers can be seen in the following Web page:

http://monitoringServerIP:8080/JCatascopia-Web/home.jsp

4.1.2 API description

Monitoring Server provides various APIs accessible by other entities in the SWITCH project to fetch different

types of monitoring data. These APIs have been described as follows:

REST endpoint Fetch the list of Containers

Method GET

Description This API gives the list of monitored containers and their information including IP,

status and name.

Input parameters None

URL template http://{://{monitoringServerIP}:}:8080/JCatascopia-Web/restAPI/agents/

Example of URL http://194.249.0.192:8080/JCatascopia-Web/restAPI/agents/

Example of result {
"agents":[{"agentID":"99470131e7c44eeb8e2609d7f25e66ea",
 "agentIP":"194.249.1.46",
 "status":"UP",
 "agentName":"194.249.1.46"},
 {"agentID":"ce8bca7033a14198a2611046d9919e33",
 "agentIP":"194.249.1.28",
 "status":"UP",
 "agentName":"194.249.1.28"}]
}

REST endpoint Fetch the list of measured metrics associated with a specified container

Method GET

Description This API gives the list of measured metrics (and their associated information e.g.

metric ID, metric name, metric type, metric group and so on) associated with a

container specified via an ID.

643963– SWITCH Dissemination level: PU

Page 10 of 55

Input parameters Container ID

URL template http://{://{monitoringServerIP}:}:8080/JCatascopia-

Web/restAPI/agents/{/{agentID}/}/availableMetrics

Example of URL http://194.249.0.192:8080/JCatascopia-

Web/restAPI/agents/99470131e7c44eeb8e2609d7f25e66ea/availableMetrics

Example of result {"metrics":[{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:arch","name":"arch","units":"","type
":"STRING","group":"StaticInfo"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:btime","nam
e":"btime","units":"","type":"STRING","group":"StaticInfo"},{"metricID":"99470131e7c44eeb8e2609
d7f25e66ea:cpuIOwait","name":"cpuIOwait","units":"%","type":"DOUBLE","group":"CPU"},{"metricI
D":"99470131e7c44eeb8e2609d7f25e66ea:cpuIdle","name":"cpuIdle","units":"%","type":"DOUBLE
","group":"CPU"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:cpuNum","name":"cpuNum",
"units":"","type":"STRING","group":"StaticInfo"},{"metricID":"99470131e7c44eeb8e2609d7f25e66e
a:cpuSystem","name":"cpuSystem","units":"%","type":"DOUBLE","group":"CPU"},{"metricID":"9947
0131e7c44eeb8e2609d7f25e66ea:cpuTotal","name":"cpuTotal","units":"%","type":"DOUBLE","gro
up":"CPU"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:cpuUser","name":"cpuUser","units
":"%","type":"DOUBLE","group":"CPU"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:diskFr
ee","name":"diskFree","units":"MB","type":"LONG","group":"Disk"},{"metricID":"99470131e7c44eeb
8e2609d7f25e66ea:diskTotal","name":"diskTotal","units":"MB","type":"LONG","group":"Disk"},{"me
tricID":"99470131e7c44eeb8e2609d7f25e66ea:diskUsed","name":"diskUsed","units":"%","type":"D
OUBLE","group":"Disk"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:iotime","name":"iotim
e","units":"%","type":"DOUBLE","group":"DiskStats"},{"metricID":"99470131e7c44eeb8e2609d7f25
e66ea:memCache","name":"memCache","units":"KB","type":"INTEGER","group":"Memory"},{"metr
icID":"99470131e7c44eeb8e2609d7f25e66ea:memFree","name":"memFree","units":"KB","type":"I
NTEGER","group":"Memory"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:memSwapFree
","name":"memSwapFree","units":"KB","type":"INTEGER","group":"Memory"},{"metricID":"9947013
1e7c44eeb8e2609d7f25e66ea:memSwapTotal","name":"memSwapTotal","units":"KB","type":"INT
EGER","group":"Memory"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:memTotal","name"
:"memTotal","units":"KB","type":"INTEGER","group":"Memory"},{"metricID":"99470131e7c44eeb8e
2609d7f25e66ea:memUsed","name":"memUsed","units":"KB","type":"INTEGER","group":"Memory
"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:memUsedPercent","name":"memUsedPerc
ent","units":"%","type":"DOUBLE","group":"Memory"},{"metricID":"99470131e7c44eeb8e2609d7f2
5e66ea:netBytesIN","name":"netBytesIN","units":"bytes/s","type":"DOUBLE","group":"Network"},{"
metricID":"99470131e7c44eeb8e2609d7f25e66ea:netBytesOUT","name":"netBytesOUT","units":"
bytes/s","type":"DOUBLE","group":"Network"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea
:netPacketsIN","name":"netPacketsIN","units":"packets/s","type":"DOUBLE","group":"Network"},{"
metricID":"99470131e7c44eeb8e2609d7f25e66ea:netPacketsOut","name":"netPacketsOut","units
":"packets/s","type":"DOUBLE","group":"Network"},{"metricID":"99470131e7c44eeb8e2609d7f25e
66ea:os","name":"os","units":"","type":"STRING","group":"StaticInfo"},{"metricID":"99470131e7c44
eeb8e2609d7f25e66ea:readkbps","name":"readkbps","units":"KB/s","type":"DOUBLE","group":"Dis
kStats"},{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:writekbps","name":"writekbps","units"
:"KB/s","type":"DOUBLE","group":"DiskStats"}]}

REST endpoint Fetch the last value of a metric

Method GET

Description This API gives the last value of the metric specified via metric ID.

Input parameters Metric ID

URL template http://”monitoringServerIP”:8080/JCatascopia-Web/restAPI/metrics/<metricID>

Example of URL http://194.249.0.192:8080/JCatascopia-

Web/restAPI/metrics/99470131e7c44eeb8e2609d7f25e66ea:cpuTotal

Example of result {
"metricID":"99470131e7c44eeb8e2609d7f25e66ea:cpuTotal",
"values":[{"metricID":"99470131e7c44eeb8e2609d7f25e66ea:cpuTotal",
 "name":"cpuTotal",
 "units":"%",
 "type":"DOUBLE",
 "group":"CPU",

643963– SWITCH Dissemination level: PU

Page 11 of 55

 "value":"0.30000000000000004",
 "timestamp":"10:47:38"}]
}

REST endpoint To fetch the list of Virtual Clusters

Method GET

Description This API gives the ID and name of all created Virtual Clusters. A Virtual Cluster

represents a group of containers that are providing together the same service. This

concept comes when the SWITCH suggests the horizontal scalability of running

instances. Therefore, if three running container instances are providing the same

service, these three containers make one Virtual Cluster.

Input parameters None

URL template http://”monitoringServerIP”:8080/JCatascopia-Web/restAPI/subscriptions/

Example of URL http://194.249.0.192:8080/JCatascopia-Web/restAPI/subscriptions/

Example of result {"subs":[{"subID":"32022e7042c749c79735ccb95409cca6",
 "subName":"test2"},
 {"subID":"12acfaed2fcc47afae4650da56140e8e",
 "subName":"test"}]
}

REST endpoint Fetch the list of containers in a Virtual Cluster

Method GET

Description This API gives the list of containers (their associated information e.g. ID and IP)

which are the members of a Virtual Cluster specified via cluster ID.

Input parameters Cluster ID

URL template http://”monitoringServerIP”:8080/JCatascopia-

Web/restAPI/subscriptions/<clusterID>/agents

Example of URL http://194.249.0.192:8080/JCatascopia-

Web/restAPI/subscriptions/12acfaed2fcc47afae4650da56140e8e/agents

Example of result {"agents":[{"agentID":"9761b206be714c8289668e49c11a3ce7",
 "agentIP":"194.249.1.46"},
 {"agentID":"b0dbdf77ccd34937b556f75925ffac2c",
 "agentIP":"194.249.1.28"}]
}

4.1.3 Developed software

In the SWITCH project, the Monitoring Server has been containerized to be deployed automatically by

container management systems such as Kubernetes. To this end, two files (“Dockerfile” and “start.sh”) which

include associated code to prepare the containerized Monitoring Server are as follows:

FROM poklet/cassandra:latest
#--------------------SETUP OF THE JCATASCOPIA MONITORING AGENT---------------------------
RUN yum install -y wget
RUN yum install -y tar
#change the workdir
WORKDIR /root
RUN wget https://www.dropbox.com/s/lodwxb237u4fets/JCatascopia-Server-0.0.2-SNAPSHOT.tar.gz
RUN tar xvfz JCatascopia-Server-0.0.2-SNAPSHOT.tar.gz
RUN export TERM=xterm
RUN cp -r JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopiaServerDir /usr/local/bin/
RUN chmod +x /etc/init.d/JCatascopia-Server

643963– SWITCH Dissemination level: PU

Page 12 of 55

RUN mv -f JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopia-Server-CELAR /etc/init.d/JCatascopia-Server
RUN wget http://archive.apache.org/dist/tomcat/tomcat-7/v7.0.55/bin/apache-tomcat-7.0.55.tar.gz
RUN tar xvfz apache-tomcat-7.0.55.tar.gz -C /usr/share/
RUN mv /usr/share/apache-tomcat-7.0.55 /usr/share/tomcat/
RUN wget https://www.dropbox.com/s/gr4celempy7sybu/JCatascopia-Web.war
RUN cp JCatascopia-Web.war /usr/share/tomcat/webapps/
#RUN java -jar JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopiaServerDir/JCatascopia-Server-0.0.2-SNAPSHOT.jar
JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopiaServerDir /var/lock/JCatascopia-Server-lock &
#------------EXPOSE THE PORTS AND START THE SCRIPT THAT SHOULD START TOMCAT-------------
#expose the ports of the container
EXPOSE 8080 4242 4245 7199 7000 7001 9160 9042 8012 61621
#configure and start components with an external script
COPY start.sh /root/start.sh
RUN chmod 777 /root/start.sh
ENTRYPOINT ["/root/start.sh"]

Figure 4-2 Dockerfile

#!/bin/bash
sed -i 's/securerandom.source=file:\/dev\/random/securerandom.source=file:\/dev\/.\/urandom/g'
/usr/lib/jvm/jre/lib/security/java.security
sh /usr/share/tomcat/bin/startup.sh
cd /etc/init.d/
cassandra start
exec java -jar /root/JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopiaServerDir/JCatascopia-Server-0.0.2-
SNAPSHOT.jar /root/JCatascopia-Server-0.0.2-SNAPSHOT/JCatascopiaServerDir /var/lock/JCatascopia-Server-lock

Figure 4-3 Instructions' script “start.sh”

4.2 Monitoring Agent

In the base architecture of JCatascopia, there is a concept called "Monitoring Probe". In this architecture,

Monitoring Probes are in charge of gathering monitoring metrics, which are then aggregated by the individual,

associated Monitoring Agent. These probes are small java classes, which are loaded by the agent and are used

to pull data. The base architecture of JCatascopia has two properties, which makes hard to be integrated with

the containers used in the SWITCH project. Firstly, JCatascopia is written in Java and has no client SDKs for

other languages. Therefore, unfortunately the container requires a lot of memory and many packages to be able

to run a JVM. The second is the fact that the design of the Monitoring Probes is quite static and it is hard to

re-configure the probe or the agent under which it runs to allow multiple containers being monitored by the

same probe/agent. The main idea of a new design for the Monitoring Agent in the SWITCH project is using

only one entity as an intermediary, which is able to receive monitoring data from containers through UDP-

based StatsD protocol available for many programming languages and then forwarded to the Monitoring

server. The protocol is available on GitHub:

https://github.com/etsy/StatsD

This new architecture of the monitoring system has been created due to the following criteria:

 Only one agent per application environment: a single agent is needed in the environment, which can

receive the monitoring data (measured data) from a large number of containers running to provide the

service.

 Easy to configure containerized services: Using this new architecture of the monitoring system, there is

only one Monitoring Agent to be prepared, each container just needs to know the IP address of this

Monitoring Agent (shown in the following figure) as a parameter. This can be performed as an

environmental variable when a container is launched. Besides that, in order to forward the monitoring data,

the containerized Monitoring Agent only needs to know the IP address of the Monitoring Server.

 Low footprint and easy to integrate: As there are client SDKs available and plugins for software like

NGINX, MySQL and so on, the footprint of new monitoring architecture in any container is very low

643963– SWITCH Dissemination level: PU

Page 13 of 55

(usually the order of tens of kilobytes). The monitoring part runs in-process so containers remain simple

and there is no need for complicated process management.

Figure 4-4 UDP-based StatsD as simple way to send measured metrics.

4.2.1 Functionality

In the SWITCH project, the JCatascopia monitoring system has been extended additionally to also measure

container-level metrics. This monitoring system is appropriate for a large number of monitored containers.

This monitoring solution, which consists of the Monitoring Agent, requires certain information to be passed

for each measured metric through StatsD protocol between containers and the Monitoring Agent. To this end,

a format for the metric key has been defined as follows:

eu.switch.<application-environment>.<container-id>.<container-ip>.<metric-group-name>.<metric-name>.<units>

The considered fields in the above-mentioned format are:

 eu.switch.<application-environment> - This parameter helps the Monitoring Adapter filter measured metrics

which are not supposed to be sent to the Monitoring Server.

 <container-id> - This parameter represents the container ID. It is suggested to use a randomly generated

string, which includes different digits to prevent duplication issue (e.g. UUID).

 <container-ip> - This parameter shows the container IP. As StatsD keys use dots to separate each part, the

IP address will be converted by dashes instead of dots (e.g. 127.0.0.1 would be converted to 127-0-0-1).

 <metric-group-name> - This parameter represents the metric group. There are some reserved group names,

which have been used for the assigned monitoring values (e.g. 'StatsInfoProbe', 'CPUProbe',

'DiskStatsProbe', 'NetworkProbe', 'MemoryProbe').

 <metric-name> - This parameter shows the metric name in the monitoring system. There are some reserved

names for monitoring metrics which have been used for the assigned monitoring values (e.g. 'cpuTotal',

'cpuUser', 'cpuSystem', 'cpuIdle', 'cpuIOwait', 'memTotal', 'memFree').

 <units> - This parameter represents the metric units to display in the monitoring system. This is an optional

parameter.

4.2.2 Developed software

The Monitoring Agent has been containerized and uploaded in the Docker Hub on beia/monitoring_agent. In

order to start this container, two environment variables should be set as following:

 MONITORING_SERVER - This parameter should be initialized as the address of the Monitoring Server.

 MONITORING_PREFIX - This parameter should be initialized as the prefix of all the metric keys to be

processed and sent forward by the Monitoring Agent (For example: “eu.switch.beia”).

643963– SWITCH Dissemination level: PU

Page 14 of 55

Figure 4-5 Container image for the Monitoring Agent.

4.3 Time Series DataBase

A Time Series Database (TSDB) has been employed in the SWITCH project for storing all measured values

indexed by time. This TSDB used in the SWITCH project per application environment has been implemented

by the Apache Cassandra Server, which is a distributed database, designed to manage huge amounts of time-

ordered monitoring data. In essence, the data streams coming from the Monitoring Agent are received by the

Monitoring Server and then stored in the TSDB that is capable of handling large amount of monitoring data

[9].

Figure 4-6 TSDB as a part of the Monitoring System in the SWITCH project.

4.3.1 Functionality

A TSDB is a software component that is optimized for handling a large amount of time series monitoring data

indexed by time. In the SWITCH project, a NoSQL database system called Apache Cassandra has been chosen

for these types of TSDB challenges. The Apache Cassandra’s data model is an appropriate fit for handling

monitoring data as the measured data in sequence regardless of datatype or size.

4.3.2 API description

According to the Cassandra documentations, the API to Cassandra is “Cassandra Query Language” (CQL). In

order to apply CQL, it is needed to connect to the database via one of the following options:

 cqlsh tool

 Client driver for Cassandra (as shown in the following code used in the SWITCH project as an example).

import com.datastax.driver.core.Cluster;
import com.datastax.driver.core.ResultSet;
import com.datastax.driver.core.Row;
import com.datastax.driver.core.Session;
import com.datastax.driver.core.exceptions.InvalidQueryException;
import com.datastax.driver.core.exceptions.NoHostAvailableException;
import com.datastax.driver.core.policies.ConstantReconnectionPolicy;

643963– SWITCH Dissemination level: PU

Page 15 of 55

import com.datastax.driver.core.policies.DowngradingConsistencyRetryPolicy;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;
public class CassandraDB {
 private Session session;
 private static Logger logger;
 public static void main(String[] args) {
 // init app
 new CassandraDB(logger, "db", "*.*.*.*", 9042);
 }
 public CassandraDB(Logger logger, String databaseName, String cassandraIP, int port) {
 this.logger = logger;
 try {
 final InetAddress ip = InetAddress.getByName(cassandraIP);
 initDatabase(ip, port, databaseName);
 } catch (UnknownHostException e) {
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 public void initDatabase(InetAddress ip, int port, String databaseName) {
 try {
 //connect to cassandra cluster
 Cluster cluster = Cluster.builder().addContactPoints(ip.getHostAddress()).withCredentials
 ("*********_username", "********_password").withPort(port).withRetryPolicy
 (DowngradingConsistencyRetryPolicy.INSTANCE).withReconnectionPolicy(new
 ConstantReconnectionPolicy(1000L)).build();
 session = cluster.connect(databaseName);
 System.out.println("Logged to keyspace: "+ session.getLoggedKeyspace());
 // simple CQL query:
 ResultSet resultSet = this.session.execute("select * from agent_table limit 20;");
 Set<String> list = new HashSet<String>();
 // list query results
 for (Row row : resultSet) {
 final String id = row.getString("agentid");
 System.out.println("agentid: "+row.getString("agentip"));
 System.out.println("agentname: "+row.getString("agentname"));
 System.out.println("status: "+row.getString("status"));
 System.out.println("tags: "+row.getString("tags"));
 System.out.println("tstart: "+row.getUUID("tstart"));
 System.out.println("tstop: "+row.getUUID("tstop"));
 System.out.println("-----------------------------------");
 list.add(id);
 }
 } catch (InvalidQueryException e) {
 if (e.getMessage().equals("Keyspace asapDB does not exist")) {
 Cluster cluster = Cluster.builder().addContactPoints("194.249.0.185").withCredentials
 ("*********_username", "*********_password").build();
 Session session = cluster.connect("asapdb");
 session.getState();
 }
 else {
 e.printStackTrace();
 }
 } catch (NoHostAvailableException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }}}

Figure 4-7 Driver for Cassandra used in the SWITCH project.

643963– SWITCH Dissemination level: PU

Page 16 of 55

4.3.3 TSDB format

The TSDB format in the Cassandra server for containers is as follows:

CREATE TABLE asapdb.agent_table (
 agentid text PRIMARY KEY,
 agentip text,
 agentname text,
 status text,
 tags text,
 tstart timeuuid,
 tstop timeuuid
) WITH bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'
 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

The TSDB format in the Cassandra server for metrics monitored by the monitoring system is as follows:

CREATE TABLE asapdb.metric_table (
 agentid text,
 metricid text,
 is_sub text,
 mgroup text,
 name text,
 type text,
 units text,
 PRIMARY KEY (agentid, metricid)
) WITH CLUSTERING ORDER BY (metricid ASC)
 AND bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'
 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

The TSDB format in the Cassandra server for measured values of metrics is as follows:

CREATE TABLE asapdb.metric_value_table (
 metricid text,
 event_date text,
 event_timestamp timeuuid,
 mgroup text,
 name text,
 type text,
 units text,
 value text,
 PRIMARY KEY ((metricid, event_date), event_timestamp)
) WITH CLUSTERING ORDER BY (event_timestamp DESC)
 AND bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'

643963– SWITCH Dissemination level: PU

Page 17 of 55

 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

The TSDB format in the Cassandra server for virtual clusters is as follows:

CREATE TABLE asapdb.subscription_agents_table (
 subid text,
 agentid text,
 agentip text,
 PRIMARY KEY (subid, agentid)
) WITH CLUSTERING ORDER BY (agentid ASC)
 AND bloom_filter_fp_chance = 0.01
 AND caching = '{"keys":"ALL", "rows_per_partition":"NONE"}'
 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy'}
 AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99.0PERCENTILE';

4.4 Alarm trigger

The Alarm-Trigger is a component which checks the incoming monitoring data and notifies other components

of the system (such as Self-Adapter and SWITCH GUI) when the application is experiencing abnormal

behaviour based on the predefined thresholds for each monitoring metric [10]. As shown in Figure 4-8, the

Alarm-Trigger is capable of triggering alerts if a threshold is violated. It periodically investigates all measured

data and compares their values with the thresholds.

Figure 4-8 Alarm-Trigger as a part of the Monitoring System in the SWITCH project.

643963– SWITCH Dissemination level: PU

Page 18 of 55

4.4.1 Functionality

For each metric at each level of monitoring (e.g. container or application), there is a threshold which is a value

indicating the acceptable performance level for that metric. The user through the SWITCH GUI can set the

threshold. The Monitoring Server, the TSDB and the Alarm Trigger are tightly coupled, i.e. running on the

same virtual machine to optimize network bandwidth and computational resources needed for data distribution.

4.4.2 API description

Alarm-Trigger has two APIs. First gives the Alarm-Trigger the input in form of a YAML file which includes

the list of metrics and their associated type, subtype, class_id, label, data_type, action, unit, period, minimum,

maximum, warning_value (warning threshold), warning_operator, critical_value (critical threshold) and

critical_operator.

REST endpoint Fetch the input (YAML file) for the Alarm-Trigger component

Method GET

Description This API gives the input for the Alarm-Trigger that includes all metrics and their

associated thresholds to be periodically investigated.

Input parameters None

URL template http://”SIDESideIP”:port/SWITCH/rest/side/getAlarmTriggerInput

Example of URL http://194.249.0.192:8080/SWITCH/rest/side/getAlarmTriggerInput

Example metric1:
 type: container_level
 subtype: CPUProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: cpuTotal
 data_type: double
 action: average
 unit: %
 period: 20
 range:
 minimum: 0.0
 maximum: 100.0
 alarm:
 warning:
 warning_value: 80.0
 warning_operator: ">="
 critical:
 critical_value: 100.0
 critical_operator: ">="
#####################################
metric2:
 type: container_level
 subtype: MemoryProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: memTotal
 data_type: double
 action: average
 unit: %
 period: 20
 range:
 minimum: 0.0
 maximum: 100.0
 alarm:
 warning:
 warning_value: 80.0
 warning_operator: ">="

643963– SWITCH Dissemination level: PU

Page 19 of 55

 critical:
 critical_value: 100.0
 critical_operator: ">="
#####################################
metric3:
 type: application_level
 subtype: Service1Probe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: AvgResponseTime
 data_type: double
 action: average
 unit: ms
 period: 20
 range:
 minimum: 0.0
 maximum: 1000.0
 alarm:
 warning:
 warning_value: 15.0
 warning_operator: ">="
 critical:
 critical_value: 30.0
 critical_operator: ">="
#####################################

The example mentioned above for a service (such as the BEIA CC Server) possibly including more than one

container could be considered as follows:

if ((cpuTotal>=80%) or (memTotal>=80%) and (AvgResponseTime>=15ms)) then Send_Alert_To_Self-Adapter in order to
initiate new container instance.

In this regard, an experiment has been performed. As an example, assume that the workload includes two steps.

In the first step, the number of incoming requests for the CC Server is slowly rising from 100 to 1600 requests

per six seconds. In contrast, during the second step, workload density drops smoothly from 1600 to 100

requests. As shown in the following figure, the number of containers is increasing in the first step of the

workload scenario and it is decreasing in the second step according to the number of arrived requests at

execution time. Therefore, six new containers have been gradually started up during the experiment in the first

step of this workload scenario. Red arrows in this figure indicate the time intervals when new containers have

been initiated during the rising workload and purple arrows show the time intervals when the running

containers have been removed from the cluster during the falling workload.

Figure 4-9 Number of containers vs number of requests.

643963– SWITCH Dissemination level: PU

Page 20 of 55

Moreover, the following figure shows the average CPU utilization of all running containers in the cluster

according to the changing workload at runtime. This figure implies that in seven monitoring intervals,

enumerated from 1 to 7, the average CPU usage is over the CPU threshold which is 80% (defined in the YAML

file mentioned above). However, the previous figure shows that there have been just six container initiations.

Therefore, during one of these seven monitoring intervals—the 6th interval—the average response time of the

application has been less than 15ms (the threshold for the response time of the CC Server that was defined in

the YAML file mentioned above) indicating that the system is able to handle incoming requests without any

performance problem yet. Hence, no container start up occurs for this interval, which is numbered six.

Figure 4-10 Average CPU usage of containers vs number of requests.

Furthermore, the following figure shows the average memory usage of all running containers in the cluster

according to the changing workload at runtime for this experiment. From this figure, it is simply concluded

that the conducted service in this experiment is not a memory-intensive service, as the average memory usage

was almost steady in the conducted experiment—around ~28% of the whole memory.

Figure 4-11 Average memory usage of the cluster.

Another API of the Alarm-Trigger sends notifications to the Self-Adapter if any threshold is reached.

REST endpoint Send the notification to the Self-Adapter

Method GET

643963– SWITCH Dissemination level: PU

Page 21 of 55

Description This API sends alerts to the Self-Adapter if thresholds are violated at run-time.

Input parameters /

URL template http://Self-AdapterIP:Port/SWITCH/rest/asap/alarm_trigger_executed?

DateTime=<datetime>& label=<label>&class_id=<class_id>&value=<value>&

warning_or_critical=<warning_or_critical>

4.4.3 Developed software

The following YAML code is considered as an example for the input of the Alarm-Trigger component. In this

example, the first metric labelled “cpuTotal” represents the CPU resource utilisation of the machine on which

the container is running. This value is between 0 and 100 percent. Metrics such as 'cpuTotal', 'cpuUser' and

'cpuSystem' have the same type called “subtype”. The data type for these metrics is “double” and their unit is

percentage (%). Each metric has its own period for checking whether it is violated or not. For this example, if

the total CPU utilization is over 80%, the Alarm-Trigger will notify the Self-Adapter by a warning alert. In

addition, if the total CPU utilization is over 100%, the Alarm-Trigger will notify the Self-Adapter by a critical

alert.

#####################################
metric1:
 type: vm_level
 subtype: CPUProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: cpuTotal
 data_type: double
 action: average
 unit: %
 period: 20
 range:
 minimum: 0.0
 maximum: 100.0
 alarm:
 warning:
 warning_value: 80.0
 warning_operator: ">="
 critical:
 critical_value: 100.0
 critical_operator: ">="
#####################################
metric2:
 type: vm_level
 subtype: CPUProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: cpuSystem
 data_type: double
 action: average
 unit: %
 period: 20
 range:
 minimum: 0.0
 maximum: 100.0
 alarm:
 warning:
 warning_value: 40.0
 warning_operator: ">="
 critical:
 critical_value: 50.0
 critical_operator: ">="
#####################################
metric3:

643963– SWITCH Dissemination level: PU

Page 22 of 55

 type: container_level
 subtype: NetworkProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: netBytesIN
 data_type: double
 action: average
 unit: bytes/s
 period: 10
 range:
 minimum: 0.0
 maximum: 30000000.0
 alarm:
 warning:
 warning_value: 20000000.0
 warning_operator: ">="
 critical:
 critical_value: 25000000.0
 critical_operator: ">="
#####################################
metric4:
 type: application_level
 subtype: FrameProbe
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: frameRate
 data_type: double
 action: average
 unit: frames/s
 period: 10
 range:
 minimum: 0.0
 maximum: 25.1
 alarm:
 warning:
 warning_value: 25.0
 warning_operator: "<="
 critical:
 critical_value: 24.9
 critical_operator: "<="
#####################################
metric5:
 type: P2P_level
 subtype: ConnectionQuality
 class_id: "1ccba0cc92174ce788695cfc0a027b57"
 properties:
 label: Jitter
 data_type: double
 action: maximum
 unit: ms
 period: 30
 range:
 minimum: 0.0
 maximum: infinite
 alarm:
 warning:
 warning_value: 0.2
 warning_operator: ">="
 critical:
 critical_value: 1.0
 critical_operator: ">="
#####################################

Figure 4-12 An example as input for the Alarm-Trigger in the SWITCH project.

643963– SWITCH Dissemination level: PU

Page 23 of 55

In the YAML file shown in the above figure, “type” can have different options: ['vm_level', 'container_level',

'application_level']. Moreover, “action” can include various options: ['average', 'minimum', 'maximum',

'whatever']. Besides that, “operator” can be defined as: ['<', '<=', '>', '>=', '==', '!=', 'whatever']. In addition,

“unit” can be chosen as one of these options: ['%', 'bytes/s', 'KB/s', 'ms', 'frames/s', 'whatever'].

4.5 Self-adapter Decision Maker

4.5.1 Functionality

To achieve adequate QoS for applications in the SWITCH project, runtime variations in running conditions

intrinsic to the cloud and edge environments should be monitored. These types of systems should therefore be

continuously monitored and hence adapted at various levels including infrastructure, container and application

levels. To this end, the "Self-adapter Decision Maker" that applies a new incremental learning approach,

explained in this section as Learning Classifier System (LCS), has been proposed based on multi-level

monitoring data. The "Self-adapter Decision Maker" is able to detect runtime changes in the application

environment and define the way of reacting to continuously adapt the running services for optimal

performance. The "Self-adapter Decision Maker" dynamically generates a set of rules that allow us to find

potential performance bottlenecks and then make the decisions to achieve suitable application adaptation

actions.

4.5.2 Learning Classifier System

The LCS is aimed at defining a set of adaptation rules stored in the Knowledge Base. The LCS module includes

three fundamental components: (I) Environment, (II) Learning machine, and (III) Rule compaction.

(I) Environment : The environment means the source of monitoring data by which the LCS learns. In the

early warning system, the preparation of this environment has four different pre-processing steps: (A)

Producing monitoring data, (B) Averaging monitoring data, (C) Re-formatting monitoring data, and (D)

Converting monitoring data from numeric to binary format.

(A) Producing monitoring data: In the general sense, the high-level structure of monitoring data constructed

by the proposed monitoring framework in the SWITCH project has been shown in Figure 4-13. To enhance

the performance of an application component (e.g. DB Server in the BEIA use case), one adaptation action can

be adding more instances of this component to the pool of servers so that load can be spread across multiple

instances for one application component. In the following figure, rows belong to various metrics measured

periodically in different times for all DB Servers, all CC Servers and all point-to-point links. The value of

metrics can be Long, Double or Float.

Figure 4-13 Original format of the monitoring data.

(B) Averaging monitoring data: Our solution periodically measures the average value for all metrics at each

time, e.g. the average read and write latency of all DB Servers. In this way, shown in Figure 4-14, for each

time period, there exist average values of all metrics for application components, not for individual instances.

643963– SWITCH Dissemination level: PU

Page 24 of 55

Figure 4-14 Averaging the original monitoring data.

(C) Re-formatting monitoring data: Each row in the original format of monitoring data is a measurement

record for one metric. The original format needs to be modified since it should be consistent with the

environment usable by the LCS algorithm. In this step of preparation procedure, all measurements belonging

to the same time interval have been gathered together as one row in the new format (Figure 4-15). According

to the new structure, the overall application performance is the prediction class (endpoint) which we need to

enhance as the main goal and hence deliver the result as early as possible for the best real-time user experience.

Figure 4-15 Re-formatting monitoring data.

(D) Converting monitoring data from numeric to binary format: Numeric values of all features stored in

the reformatted monitoring data have been converted to binary values. Therefore, in our proposed the "Self-

adapter Decision Maker", all rows representing states of the environment and consequently all rules include

attributes that have the binary value. To this end, the thresholds of all monitoring metrics have been used. For

instance, the threshold for average CPU usage for each application component in the infrastructure level can

be considered 80 percent. Then, if the average CPU utilization is less than 80 percent, it has been converted to

0 and on the other hand, if it is over 80 percent, it has been converted to 1.

(II) Learning machine: The learning machine iterates over the dataset repeatedly until some stop criteria are

met, or the maximum number of learning iterations is reached. As the result, the learning machine generates a

set of rules used by the "Self-adapter Decision Maker". Rules typically take the form of an {IF:THEN}

expression, e.g. {IF 'condition' THEN 'action'}. An individual rule is not itself a prediction model, since the

rule is only applicable when its condition is satisfied. The entire population of rules collectively forms the

prediction model. Each attribute in a rule can be 0, 1, or '#' as "don't care" symbol (also referred as wildcard).

For example, the rule (#1###0### ~ 1) as {condition ~ action} can be interpreted in this way: IF the econd

attribute = 1 AND the sixth attribute = 0 (regardless of other attributes) THEN the prediction class = 1. In the

example, the second and sixth attributes have been specified in this rule, while the others were generalized. A

rule along with its associated parameters (such as accuracy, fitness and numerosity) is often referred as a

classifier. In Michigan-style LCS as the most common type of LCS algorithm, classifiers are contained within

a population ([P]) that has a user defined maximum number of classifiers. The [P] starts out empty (i.e. there

is no need to randomly initialize a rule population). Classifiers will instead be initially introduced to [P] with

a covering mechanism. The learning machine includes different components that operate in a step-wise

643963– SWITCH Dissemination level: PU

Page 25 of 55

learning cycle [11]: (Step 1) Training, (Step 2) Matching, (Step 3) Covering, (Step 4) Updating, (Step 5)

Subsuming, (Step 6) Genetic algorithm, (Step 7) Deleting.

(Step 1) Training: The beginning step in incremental learning is getting a training instance from the

environment. For online learning, LCS will obtain a completely new training instance for each iteration from

the environment.

(Step 2) Matching: The next step is finding all rules in the population [P] that have a condition matching the

attributes values of the training instance. In other words, every rule in [P] is now compared to the training

instance to see which rules match. A rule matches a training instance if all feature values specified in the rule

condition are equivalent to the corresponding feature value in the training instance. For example, assuming the

training instance is (001001 ~ 0), these rules would match: (###0## ~ 0), (00###1 ~ 0), (#01001 ~ 1), but these

rules would not (1##### ~ 0), (000##1 ~ 0), (#0#1#0 ~ 1). In matching step, the endpoint (action or prediction

class) specified by the rule is not taken into consideration. At the end, matching rules are moved to a match set

[M]. As a result, the [M] may contain classifiers that propose conflicting actions. Afterwards, since we are

performing supervised learning, [M] will be divided into a correct set [C] and an incorrect set [I]. A matching

rule goes into the [C] if it proposes the correct action (based on the known action of the training instance),

otherwise it goes into [I]. At this point, if no rule has been made into either [M] or [C], then the covering step

will be applied.

(Step 3) Covering (as rule discovery): Covering is one of two mechanisms that can introduce new rules to

[P] also known as “rule discovery”. Covering randomly generates a rule that matches the current training

instance. It works by generating a rule condition, which randomly specifies a subset of attribute values in the

current training instance, and applies wild cards (‘#’) to the rest. The action or prediction class for the rule is

set to the class of the current training instance. Assuming the training instance is (001001 ~ 0), covering might

generate any of the following rules: (#0#0## ~ 0), (001001 ~ 0), (#010## ~ 0). Covering step not only ensures

that during each learning cycle there is at least one correct, matching rule in [C], but also any rule initialized

into the population [P] will match at least one training instance. As mentioned before, [P] typically starts

empty. Because of this, covering step serves as a form of smart population initialization.

(Step 4) Updating: Parameters of any rule in [M] are updated to reflect the new experience gained from the

current training instance. For example, we can simply update the accuracy of a rule. Rule accuracy is calculated

by dividing the number of times the rule was in the correct set [C] by the number of times it was in the match

set [M]. Rule fitness is also updated in this step, and is commonly calculated as a power function based on the

inverse of rule accuracy. Numerosity of a classifier means the number of copies of this classifier in the

population [P] (if there are multiple copies). Classifiers in the correct set [C] will see an increase in both

accuracy as well as fitness. Classifiers in the incorrect set [I] will see a decrease in the accuracy and fitness.

(Step 5) Subsuming: In particular, rules that specify fewer attributes are likely to appear in match set [M]

more frequently. Subsuming step is a generalization mechanism that merges classifiers that cover redundant

parts of the problem space. In this way, it helps to decrease the size of population set [P] by subsuming a

classifier to a more general classifier (and its numerosity has been increased). In other words, the subsuming

step examines pairs of rules and looks for a situation in which one of the rules is a subsumer of another one.

For example, rule (#####0 ~ 0) is a subsumer of (##1#00 ~ 0). A subsumer rule must cover all of the problem

space of another rule, and must be more general and accurate while the more specific rule is eliminated from

the population [P].

(Step 6) Genetic algorithm (as rule discovery): This step applies a simple Genetic Algorithm (GA) as the

second type of rule discovery mechanisms. While other heuristics could be used to discover rules, the GA is

most commonly used. In fact, only two new ‘offspring’ rules are typically generated by the GA and added to

the rule population [P] during each learning cycle.

(Step 7) Deleting: The last step in the LCS learning cycle is to enforce the limited size of the rule population

using deletion in order to maintain the maximum population size. The probability of a classifier being selected

for deletion is inversely proportional to its fitness. Other factors such as the classifier’s numerosity can be

applied to increase the probability of deletion (e.g. numerosity divided by fitness). This keeps [P] from being

overrun by just a few rules with large numerosities. When a classifier is selected for deletion, its numerosity

parameter is reduced by one. When the numerosity of a classifier is reduced to zero, it is removed entirely from

the population [P].

643963– SWITCH Dissemination level: PU

Page 26 of 55

(III) Rule compaction: Once the last learning iteration is reached, the resulting rules can be applied by the

“Self-adapter Decision Maker”. However, there is often a post-processing step called “rule compaction”

applied to the resulting model after the last learning iteration. Rule compaction strategies typically seek to

remove poor, redundant or inexperienced rules from the prediction model. In this way, rule compaction

simplifies the model, improves interpretability, and even can enhance predictive performance.

4.5.3 Generated rules used by the "Self-adapter Decision Maker"

In this section, few examples of rules that can be used by the "Self-adapter Decision Maker" have been

provided. Following is an example of a generated rule:

(rule 1) (#####################0##########0#####0#### ~ 0)

In this rule, the first attribute with the value of 0 is "cpuUsedPercent" at infrastructure level for CC Server

(Apache Tomcat), the second and third attributes (defined as 0) are "memUsedPercent" and "diskUsed" also

at infrastructure level for DB Server (Cassandra). Other attributes have been set as "don't care" (#). This rule

can be interpreted in this way: If the average CPU utilization of the host(s) on which CC Server(s) is(are)

running does not exceed its threshold, also if the average memory usage and the amount of used disk capacity

of the host(s) on which DB Server(s) is(are) running do not violate their thresholds, the overall application

performance of early warning system is acceptable (0) considering users’ satisfaction. Therefore, in situations

when the overall application performance is not favourable, these three metrics should be investigated to define

if they are violated.

For instance, if "memUsedPercent" and "diskUsed" for DB Server are not presenting a problem, however

"cpuUsedPercent" for CC Server is inappropriately very high, regardless of other monitoring attributes, the

Self-Adapter suggests increasing the CPU power of the existing virtual machine(s) on which CC Server(s)

is(are) running. In this situation, if vertical scaling is not feasible for example since maximum CPU capacity

is already reached, the proposed adaptation plan could be other approaches e.g. live-service migration by

moving running CC Server container(s) from the current infrastructure to another one either at the same data

centre or at a different cloud to offer better fitted computational resources.

As another example, the following rule can be also inferred:

(#1### ~ 1)

In this rule, the attribute with the value of 1 is "processingTime" at application level for CC Server (Apache

Tomcat). Other attributes have been also defined as "don't care" (#). This rule can be interpreted in this way:

If the average response time of CC Server component is unsuitable since it is more than associated threshold,

the overall application performance is not acceptable (1). Therefore, in situations when the overall application

performance is not appropriate, this metric ("processingTime") should be considered to determine if it is

violated. For instance, if it is over the threshold, regardless of other monitoring attributes, the number of

running containerized CC Server should be increased in order to enhance the overall application performance.

4.6 Self-adapter Setup&Control

4.6.1 Functionality

In the proposed event-driven applications, service instances should be running across multiple hosts in clusters

owned by different cloud providers. Self-adapter Setup & Control component is used to abstract away the

management of such geographically dispersed service instances. The purpose of this component is to execute

the intended actions planned by the Decision Making module on the managed components that constitute the

application. It allows us to add/remove application component instances, manage the amount of RAM and

CPU share of individual instances and determine the subset of hosts or individual host, where the service

instance will be placed. For management of individual clusters we assume the use of Kubernetes orchestration

technology, which allows for horizontal and vertical scaling and resource management (RAM and CPU) within

the individual cluster. Individual cluster is setup within a relatively performance, reliable and cheap network

due to the design of scheduling and network routing domains. This confines the cluster boundaries to a single

643963– SWITCH Dissemination level: PU

Page 27 of 55

cloud provider/availability zone. Self-Adapter Setup and Control component allows SWITCH applications to

run over different cloud providers and multiple data centers and availability zones, by unifying the API to

multiple federated Kubernetes clusters. To be able to do this the component communicates with the Knowledge

Base, which stores the information needed for the orchestration of applications across clusters (i.e. information

about the cluster credentials, master nodes endpoints, status of the environment etc.).

4.6.2 API description

The Self-Adapter Setup and Control exposes REST-based API and is using JSON over HTTP. The description

in the below tables includes the REST endpoints that have been prepared in order to be able to orchestrate

SWITCH applications across multiple Kubernetes clusters. It is important to understand that instead of direct

management of individual containers, Kubernetes operates on the level of “pods” and uses “services” to expose

the “pods” to the clients outside of the cluster. The Unifying API endpoints therefore allow for creation and

destruction of “pods” and “services” rather than individual containers.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/pods

Brief description

This endpoint is used to create a new Pod in a given cluster (identified by the

{theIdOfTheCluster} parameter) and given namespace (identified by the

{theNameOfNamespace} parameter). The specification of the Pod is given as a parameter in

the body of HTTP request, and it is of mime type application/json. If this specification does not

include the Pod name then Kubernetes friendly short UUID is generated and assigned as the

name of the Pod. The endpoint is asynchronous, which means that it returns response

immediately after the creation of the pod is initiated. A successful response therefore does not

mean successful creation of the Pod.

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster in which to start the Pod. This

parameter is used to obtain the credentials and Master

node endpoint from the Knowledge Base. These are then

used to connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which to start

the Pod.

body body application/j

son

The specification of the Pod. It is in JSON format and

represents the serialized

io.fabric8.kubernetes.api.model.Pod object. The model

schema is given below. Detailed description of the model

schema can be found at http://kubernetes.io/docs/api-

reference/v1/definitions/#_v1_Pod

Body schema:
{

 "kind": "string",

 "apiVersion": "string",

 "metadata": {

 "name": "string",

 "labels": {

 "name": "string"

 },

 "generateName": "string",

 "namespace": "string",

 "annotations": ["string"]

643963– SWITCH Dissemination level: PU

Page 28 of 55

 },

 "spec": {

 "containers": [

 { "name": "string",

 "image": "string",

 "command": ["string"],

 "args": ["string"],

 "env": [

 {"name": "string",

 "value": "string" }

],

 "imagePullPolicy": "string",

 "ports": [

 { "containerPort": int,

 "name": "string",

 "protocol": "string" }

],

 "resources":

 { "cpu": "string"

 "memory": "string" }

 }

],

 "restartPolicy": "string",

 "volumes": [

 { "name": "string",

 "emptyDir": {

 "medium": "string"

 },

 "secret": {

 "secretName": "string"

 }}]}}

Response Messages
HTTP status code Response model

200 String representing the name of the created pod.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/pods/{theNameOfT

hePod}

Brief description

This endpoint is used to delete a certain Pod (identified by the {theNameOfThePod}

parameter) in a given cluster (identified by the {theIdOfTheCluster} parameter) and given

namespace (identified by the {theNameOfNamespace} parameter). The endpoint is

asynchronous, which means that it returns response immediately after the deletion of the pod is

initiated. A successful response therefore does not mean that the Pod is already deleted. The

Pod might remain in the “Running” phase for a while until Kubernetes Master node

successfully terminates it.

643963– SWITCH Dissemination level: PU

Page 29 of 55

Parameters
Parameter Type Data

Type

Description

theIdOfTheCluster query String The ID of the cluster in which to stop the Pod. This

parameter is used to obtain the credentials and Master node

endpoint from the Knowledge Base. These are then used to

connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which to stop

the Pod.

theNameOfThePod query String The name of the Pod to delete.

Response Messages
HTTP status code Response model

200 String representing the name of the deleted pod.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/pods/{theNameOfT

hePod}/hostIP

Brief description

This endpoint is used to obtain the external IP of the host where a certain Pod (identified by the

{theNameOfThePod} parameter) in a given cluster (identified by the {theIdOfTheCluster}

parameter) and given namespace (identified by the {theNameOfNamespace} parameter) is

running.

Parameters
Parameter Type Data

Type

Description

theIdOfTheCluster query String The ID of the cluster in which the Pod is running. This

parameter is used to obtain the credentials and Master node

endpoint from the Knowledge Base. These are then used to

connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which the Pod is

running.

theNameOfThePod query String The name of the Pod.

Response Messages
HTTP status code Response model

643963– SWITCH Dissemination level: PU

Page 30 of 55

200 String representing the external IP number of the host machine where the Pod is

running.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/pods/{theNameOfT

hePod}/notifyWhenRunning

Brief description

This endpoint is used to check when the Pod in a given cluster (identified by the

{theIdOfTheCluster} parameter), given namespace (identified by the {theNameOfNamespace}

parameter), and with given name (identified by the {theNameOfThePod} parameter) actually

reaches the state “Running”. It is needed because the creation of the Pod (as described above)

is asynchronous. If the Pod is in the "Running", "Succeeded" or "Failed" phase at the time of

request then the response will be sent back immediately. If the Pod is in "Pending" phase, then

a listener will be registered and the method will block until the Pod reaches the "Running"

phase. More information on Pod phases can be found at http://kubernetes.io/docs/user-

guide/pod-states/

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster in which the Pod is running. This

parameter is used to obtain the credentials and Master

node endpoint from the Knowledge Base. These are then

used to connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which the Pod

was initiated.

theNameOfThePod query String The name of the Pod.

Response Messages
HTTP status code Response model

200 Information on the Pod phase and status in application/json format representing

the serialized svitch.jernej.trnkoczy.PodIsRunningInfo object. The model schema

is given below:
{"podReachedRunningStatus":true,"podPhaseInfo":"string"}

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

643963– SWITCH Dissemination level: PU

Page 31 of 55

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/pods/{theNameOfT

hePod}/status

Brief description

This endpoint is used to retrieve the current phase of the Pod in a given cluster (identified by

the {theIdOfTheCluster} parameter), given namespace (identified by the

{theNameOfNamespace} parameter), and with given name (identified by the

{theNameOfThePod} parameter). The endpoint is synchronous, i.e. the result containing the

current phases of the pod will be returned immediately. Valid Pod phases are Pending,

Running, Succeeded, Failed and, Unknown. More information on Pod phases can be found at

http://kubernetes.io/docs/user-guide/pod-states/

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster where the Pod is located. This

parameter is used to obtain the credentials and Master

node endpoint from the Knowledge Base. These are then

used to connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which the Pod

was initiated.

theNameOfThePod query String The name of the Pod.

Response Messages
HTTP status code Response model

200 Information on the Pod phase. The data type is String that can contain the

following values: Pending, Running, Succeeded, Failed or Unknown.

500 The server encountered an unexpected condition, which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/services

Brief description

This endpoint is used to create a new Service in a given cluster (identified by the

{theIdOfTheCluster} parameter) and given namespace (identified by the

{theNameOfNamespace} parameter). The specification of the Service is given as a parameter

in the body of HTTP request, and is of type application/json. If this specification does not

include the Service name then Kubernetes friendly short UUID is generated and assigned as

the name of the Service. The endpoint is asynchronous, which means that it returns response

immediately after the creation of the Service is initiated. A successful response therefore does

not mean successful creation of the Service.

643963– SWITCH Dissemination level: PU

Page 32 of 55

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster in which to start the Service. This

parameter is used to obtain the credentials and Master

node endpoint from the Knowledge Base. These are then

used to connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which to start

the Service.

body body application/j

son

The specification of the Service. It is in JSON format and

represents the serialized

io.fabric8.kubernetes.api.model.Service object. The model

schema is given below. Detailed specification of the

model schema can be found at

http://kubernetes.io/docs/api-

reference/v1/definitions/#_v1_service

Body schema:
{

 "kind": "string",

 "apiVersion": "string",

 "metadata":{

 "finalizers":["string"],

 "labels":{

 "name":"string"

 },

 "name":"string",

 "ownerReferences":[

 {

 "name":"string"

 }

]

 },

 "spec": {

 "selector": {

 "name": "string"

 },

 "ports": [

 {

 "name":"string",

 "nodePort":int,

 "port":int,

 "protocol":"string",

 "targetPort":8080

 }

],

 "clusterIP":"string",

 "type":"string",

 "externalIPs":["string"],

 "deprecatedPublicIPs":["string"],

 "sessionAffinity":"string",

 "loadBalancerIP":"string",

 "loadBalancerSourceRanges":["string"],

 "externalName":"string"

 }

}

Response Messages
HTTP status code Response model

643963– SWITCH Dissemination level: PU

Page 33 of 55

200 String representing the name of the created Service.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/services/{theNameO

fTheService}

Brief description

This endpoint is used to delete a certain Service (identified by the {theNameOfTheService}

parameter) in a given cluster (identified by the {theIdOfTheCluster} parameter) and given

namespace (identified by the {theNameOfNamespace} parameter). The endpoint is

asynchronous, which means that it returns response immediately after the deletion of the

Service is initiated. A successful response therefore does not mean that the Service has been

successfully removed from the system.

Parameters
Parameter Type Data

Type

Description

theIdOfTheCluster query String The ID of the cluster in which to stop the Service. This

parameter is used to obtain the credentials and Master node

endpoint from the Knowledge Base. These are then used to

connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which to stop

the Service.

theNameOfTheService query String The name of the Service to delete.

Response Messages
HTTP status code Response model

200 String representing the name of the deleted Service.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/services/{theNameO

fTheService}/nodePorts

643963– SWITCH Dissemination level: PU

Page 34 of 55

Brief description

This endpoint is used to retrieve the list of nodePorts assigned to the Service in given cluster

(identified by the {theIdOfTheCluster} parameter), given namespace (identified by the

{theNameOfNamespace} parameter), and with given name (identified by the

{theNameOfTheService} parameter). The endpoint is synchronous, i.e. the result containing

the list of nodePorts assigned to the service will be returned immediately. More information on

the nodePort mechanism of Kubernetes Services can be found at

http://kubernetes.io/docs/user-guide/services/ .

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster where the Service is located. This

parameter is used to obtain the credentials and Master

node endpoint from the Knowledge Base. These are then

used to connect to the desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which the

Service was initiated.

theNameOfTheService query String The name of the Serviced.

Response Messages
HTTP status code Response model

200 A list (List<Integer> datatype in JSON format) of nodePorts assigned to the

Service.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

/API/v01/{theIdOfTheCluster}/namespaces/{theNameOfNamespace}/availableNodePorts

Brief description

This endpoint is used to retrieve the list of currently available nodePorts in given cluster

(identified by the {theIdOfTheCluster} parameter) and given namespace (identified by the

{theNameOfNamespace} parameter). The endpoint is synchronous, i.e. the result containing

the list of available nodePorts at the moment of request is returned immediately. More

information on the nodePort mechanism and the default port range can be found at

http://kubernetes.io/docs/user-guide/services/#publishing-services---service-types . If the

default port range needs to be extended it is possible to do so -

https://github.com/kubernetes/kubernetes/issues/11690 - however it is not recommended due to

port conflicts.

643963– SWITCH Dissemination level: PU

Page 35 of 55

Parameters
Parameter Type Data Type Description

theIdOfTheCluster query String The ID of the cluster in which the available nodePorts

need to be retrieved. This parameter is used to obtain the

credentials and Master node endpoint from the

Knowledge Base. These are then used to connect to the

desired Kubernetes cluster.

theNameOfNamespace query String The name of the Kubernetes namespace in which the

available nodePorts need to be retrieved.

Response Messages
HTTP status code Response model

200 A list (List<Integer> datatype in JSON format) of nodePorts available in a given

cluster and namespace.

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

4.6.3 Developed software

The API has been developed using Java Jersey (Jersey RESTful Web Services) framework, an open source,

production quality, framework for developing RESTful Web Services in Java. Our implementation uses

Fabric8 Kubernetes API library, a Java library providing easy access to the Kubernetes and OpenShift API.

This allowed us to abstract away the complexities related to security aspects (authentication, authorization)

and asynchronous nature of Kubernetes API. Furthermore, Fabric8 Kubernetes API library allows for

automatic parsing of the raw JSON data returned by the individual Kubernetes management API servers. The

Java source code of the interface can be found in GitHub at https://github.com/switch-project/WP4-

SelfAdapterSetupAndControl. All the REST endpoints described above were successfully deployed and tested

on Apache Tomcat 8 server in a form of WAR (Web Archive) file. Besides deployment in a form of .war file

a Docker image containing Tomcat server running the API has been built and is available in DockerHub:

https://hub.docker.com/r/jernejtrnkoczy/jcontrolagent01 . The Docker file used to build this image, together

with instructions on image usage, all necessary configuration files and API packed as WAR file can be found

on GitHub at https://github.com/switch-project/WP4-

SelfAdapterSetupAndControl/tree/master/BuildDockerImage .

4.7 Performance diagnose Model Generator

4.7.1 Functionality

In terms of performance-wise adaptability of the SWITCH platform, decision-making process is the key

component. It individually for every cloud application selects the best possible cluster for execution regarding

QoS towards the application end-users. As a prerequisite, the automatic decision maker relies on a QoS model,

which is generated automatically based on QoS observations prepared by cloud application developers during

the development and testing process. Therefore, cloud application developers are expected to define a QoS

metric for the application, which, hopefully, reflects in as good QoE as possible for all the parties engaged in

the application. Beside QoS metric, developers are also expected to provide additional metrics – let us say non-

QoS metrics – that can be easily monitored on a cluster or network level without having to execute the

application itself (in other words, the rest of the metrics are not on an application level). This assumption

allows for the decision making process to perform simple measurements before executing the application

without having to run the application itself while relying on the QoS model to identify the relevance of the

643963– SWITCH Dissemination level: PU

Page 36 of 55

non-QoS metrics for the QoS. The model employs qualitative modelling techniques and has been fully

described in D4.3. For the sake of completeness, it is briefly summarised here, as follows.

Let M denote metrics table with n rows and m columns, which was prepared by application developers during

the application development and testing process. Rows correspond to measurements repeated on various

machine and cluster configurations while columns correspond to different metrics employed. We assume that

the first column contains the QoS metric, and the rest of the columns contain non-QoS and non-application-

level metrics. To build a QoS model from measurements M, proceed with the following:

1. Compute differences D along rows of M for each unique pair of rows in M;

2. In S, for each element of D keep only the sign, with -1 encoding -, 0 encoding 0, and +1 encoding +;

3. Detect correlation between metrics: for each pair of correlated metrics mark one of them as being

correlated with the other. Two metrics are defined to be correlated, if they match in sign for all the

given examples. Correlations are marked into a vector c;

4. Compare into R each non-QoS column of S with the QoS column of S. For each column element take

1 for match and 0 for no match;

5. At this step, R contains only non-QoS columns. Into w, perform a summation alongside columns to

find the number of examples for each column where there is a match with the QoS metric;

6. Finally, normalise w such that the range of values fits between -1 and 1.

Result w is a row vector of weights corresponding to non-QoS metrics, where values express the relevance of

each non-QoS metric for the QoS metric. A positive value indicates that the direction of change in the QoS

metric in most number of the given examples also imply the same direction of change in the respective non-

QoS metric, while a negative value indicates opposite direction of change between the QoS and the respective

non-QoS metric. To the decision maker, the sign of the w’s elements tell whether to minimise or maximise the

respective metrics. The magnitude of w’s values (i.e. the absolute value of w’s values) denotes the degree of

relevance towards the QoS for each of the non-QoS metrics.

The presented algorithm is not too sensitive on the normalisation of values in a sense that different metrics

have different units and ranges of values. Therefore, no normalisation of values is involved on the input table

M.

4.7.2 Time and space complexity improvement

The algorithm for computing QoS model based on measurements table M, as presented above, has a quadratic

time and space complexity in number of examples n for all the steps, except for steps 3 and 6. In fact, the

computational complexity of steps 1, 2, 4 and 5 requires (𝑛
2
)𝑚 operations and the same amount of space for

storing the result (step 5 requires to store m – 1 values only). Worse, step 3 is quadratic in both, n and m. For

a large number of example cases (i.e. rows n) this might be undesirable. Because the result is a row vector with

m – 1 elements, the space complexity can be easily reduced to O(n m), which is the size of the input table M

and is therefore optimal. To achieve this, omit computation of correlations (i.e. step 3). Then start with zero

vector w and work on an arbitrary pair of rows of M at a time, while combining steps 1, 2, 4 and 5 before

processing the next pair of rows from M. After each iteration, add the intermediate vector for each pair to w.

The above update of the algorithm does improve the space but not the time complexity – time improvements

can be achieved by considering less row pairs from M. This might require careful consideration of the

distribution of the values of examples and performing random sampling with respect to the distribution. We

followed an easier approach, in which small subsets of row pairs from M are randomly and independently

chosen. Then, for each subset of pairs w is computed independently. Finally, variants of w are compared in the

distribution of metric weights. If there is no significant difference between them, then any of them is returned

as a solution. If not, the computation is repeated with more pairs observed. This optimisation is used only for

large enough n – about 1000 or more.

Moreover, if it is desired to compute correlations between metrics (step 3), it can be done as follows. Start with

w just before it is normalised (i.e. after step 5). We claim that if two metrics are correlated, then the

643963– SWITCH Dissemination level: PU

Page 37 of 55

corresponding absolute values in w should be the same. However, matched absolute values in w for correlated

pair of metrics is a necessary condition, but is not sufficient. We suggest to perform computation of correlations

only for matched scalar pairs in w (i.e. when a pair of values from w matches in their absolute values), which

should on average notably reduce the number of vector pairs to consider.

Lastly, to better leverage on the scalability of clouds, the computation of QoS model can be easily parallelised.

Each compute thread (or processor) independently computes partial w (up to step 5) on a small and unique

subset of row pairs of M and requires no synchronisation. Finally, the results of processors are reduced into a

single w before it is normalised (step 6). Simple parallelisation is especially beneficial for online updating of

the QoS model from various sources.

4.8 Knowledge Base

4.8.1 Functionality

The proposed solution uses knowledge base as a main ASAP storage system that represents the data in a RDF

graph based representation. The main advantage of the technology is the development of a robust ontology,

where the data has a higher level of logic representation such as richer inter-entity relationships, constraints

and complex data analysis mechanisms (e.g. validators and reasoning mechanisms). Therefore, the aim of the

knowledge base is to store a subset of a representative monitoring data, such as alarm trigger violations, that

can be further analysed and even extended with new assumptions and inferences. Results can be reflected as

an optimization tool for algorithms with high time complexity, for example to optimize cloud environment

[12]. The basic idea of the paper is to reduce the input data through the Knowledge Base by preserving the

quality of solution and at the same time significantly speed up the algorithm execution.

4.8.2 API description

REST endpoint

http://193.2.72.83:7070/SWITCH/rest/asap/getMonitoringInfo

Brief description

This endpoint is used to obtain information about the running monitoring service over a

running application. The monitoring service is localized through the IP of the monitoring

server and application ID. The response is a map providing all available monitoring/state

information and even knowledge base stored info such as violated monitoring metrics.

Parameters
Parameter Type Data Type Description

ip query String IP of the running monitoring server.

app_id query String Application ID that specifies the desired monitoring

information to be queried.

Response Messages
HTTP status code Response model

200 A map (Map<String,String>) datatype in JSON format that specifies the

monitoring information such as running state, number of monitoring agents,

applied monitoring metrics, violated monitoring metrics (see REST

getViolatedMonitoringMetrics) and others.

643963– SWITCH Dissemination level: PU

Page 38 of 55

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

http://193.2.72.83:7070/SWITCH/rest/asap/getAvailableMonitoringMetrics

Brief description

This endpoint returns the available monitoring metrics of a running monitoring agent. It is

usually used to register new monitoring metrics in the monitoring system (e.g. as a combo box

in the GUI).

Parameters
Parameter Type Data Type Description

monitoring_agent_id query String The ID of a running monitoring agent where we want to

get available monitoring metrics.

Response Messages
HTTP status code Response model

200 A map (Map<String,String>) datatype in JSON format that specifies the

monitoring metrics with monitoring metric ID as a key and monitoring human

readable description as a string. Additional extension is possible to return also the

group of a monitoring metric.

500 The server encountered an unexpected condition, which prevented it from

fulfilling the request.

REST endpoint

http://193.2.72.83:7070/SWITCH/rest/asap/getAvailableAsapClusters

Brief description

This endpoint returns a list of all available and running ASAP cloud clusters. No input

parameters are included.

Response Messages
HTTP status code Response model

200 A map (Map<String,String>) datatype in JSON format that specifies the cluster

information (e.g. ID, name, cluster type, current state, number of running pods

etc.).

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

REST endpoint

643963– SWITCH Dissemination level: PU

Page 39 of 55

http://193.2.72.83:7070/SWITCH/rest/asap/getViolatedMonitoringMetrics

Brief description

This endpoint returns a list of violated monitoring metrics. In cases when monitoring triggers

executes the alarm trigger notifies the self adapter and the violation information is stored into

knowledge base according the ASAP ontology. The presented input parameters are not

mandatory and are used like a filter to reduce the result list.

Parameters
Parameter Type Data Type Description

monitoring_metric_id query String The ID of a monitoring metric that we want to investigate.

cloud_id query String The ID of a cloud to be checked the monitoring metric

violations.

application_id query String The ID of a specific application where the violations

occured.

Response Messages
HTTP status code Response model

200 A map (Map<String,String>) datatype in JSON format that specifies all available

information of the violated monitoring metrics (e.g. monitoring metric, metric

value, unit, timestamp, performed adaptation action etc.).

500 The server encountered an unexpected condition which prevented it from

fulfilling the request.

4.8.3 Developed software

 The API has been developed using Java Jersey (Jersey RESTful Web Services) framework. The most

important libraries used in the API are:

 Jena Fuseki1: used for knowledge base manipulation (RDF CRUD operations, application of reasoning

mechanisms, validators, rules etc.),

 Fabric82: used for directly interaction with ASAP clusters that are founded on Kubernetes, and

 Cassandra3: used for communication with TSDB where monitoring information is needed to be

obtained.

The Java source code of the ASAP Knowledge base API can be in GitHub at https://github.com/switch-

project/WP4-KB_API. All the REST endpoints described above were deployed and tested on Apache Tomcat

8 server in a form of WAR (Web Archive). The main used build technology is Apache Maven, which does not

need to encapsulate the libraries in the project but are downloaded from the official Maven repository.

Deployed API is currently deployed on Tomcat 7 and can be accessed on the following URL

http://193.2.72.83:7070/manager/html. Jena Fuseki server runs as standalone service on the following URL

1 https://jena.apache.org/documentation/fuseki2/
2 https://fabric8.io/
3 http://cassandra.apache.org/

643963– SWITCH Dissemination level: PU

Page 40 of 55

http://193.2.72.83:3030/index.html. To facilitate the development and deployment process a continuous build

integration tool will be used and described in the purposive deliverable.

 Testbed description

In order to test the functionality of the ASAP, and be able to perform the measurements described in (section

6) we had to establish a testbed. Table 5-1 summarizes the testbed that was set up. As can be seen the testbed

comprises 14 machines in seven geographically distributed Kubernetes clusters, deployed over three different

cloud providers.

V
M

C
lu

ste
r

C
lo

u
d

p
r
o
v
id

e
r

L
o
c
a
tio

n

#
 v

C
P

U

H
o
st C

P
U

 ty
p

e

v
C

P
U

 sc
h

e
d

u
le

R
A

M

D
isk

D
isk

 ty
p

e

D
o
c
k

e
r
 v

e
r
sio

n

D
o
c
k

e
r

n
e
tw

o
r
k

 d
r
iv

er

D
o
c
k

e
r
 g

r
a
p

h

d
r
iv

er

H
o
st O

S

1 1 FlexiOps Edinburgh,
UK

4 AMD Opteron
1.8 GHz

Pre-
emptive

4
GB

100
GB

Magnetic 1.11.2 flanne
ld

overlay CoreOS
1185.5.

0

2 1 FlexiOps Edinburgh,
UK

4 AMD Opteron
1.8 GHz

Pre-
emptive

4
GB

100
GB

Magnetic 1.11.2 flanne
ld

overlay CoreOS
1185.5.

0

3 2 Arnes Ljubljana,

Slovenia

1 Intel Core

(Haswell), 2.4
GHz

Pre-

emptive

4

GB

80

GB

Magnetic 1.10.3 flanne

ld

overlay CoreOS

1122.2.
0

4 2 Arnes Ljubljana,

Slovenia

1 Intel Core

(Haswell), 2.4
GHz

Pre-

emptive

4

GB

80

GB

Magnetic 1.10.3 flanne

ld

overlay CoreOS

1122.2.
0

5 3 GCP,

Gke-us-

west

The Dalles

Oregon, USA

1 2.2 GHz Intel

Xeon E5 v4

(Broadwell)

dedicated

HW thread

per vCPU

3.7

5

GB

100

GB

Magnetic 1.11.2 HW

bridg

e

overlay COS 57

6 3 GCP,

Gke-us-

west

The Dalles

Oregon, USA

1 2.2 GHz Intel

Xeon E5 v4

(Broadwell)

dedicated

HW thread

per vCPU

3.7

5

GB

100

GB

Magnetic 1.11.2 HW

bridg

e

overlay COS 57

7 4 GCP,
Gke-eu-

west

St. Ghislain,
Belgium

1 2.3 GHz Intel
Xeon E5 v3

(Haswell)

platform

dedicated
HW thread

per vCPU

3.7
5

GB

100
GB

Magnetic 1.11.2 HW
bridg

e

overlay COS 57

8 4 GCP,

Gke-eu-
west

St. Ghislain,

Belgium

1 2.3 GHz Intel

Xeon E5 v3
(Haswell)

platform

dedicated

HW thread
per vCPU

3.7

5
GB

100

GB

Magnetic 1.11.2 HW

bridg
e

overlay COS 57

9 5 GCP,

Gke-

asia-east

Changhua

County,

Taiwan

1 2.5 GHz Intel

Xeon E5 v2

(Ivy Bridge)
platform

dedicated

HW thread

per vCPU

3.7

5

GB

100

GB

Magnetic 1.11.2 HW

bridg

e

overlay COS 57

10 5 GCP,
Gke-

asia-east

Changhua
County,

Taiwan

1 2.5 GHz Intel
Xeon E5 v2

(Ivy Bridge)

platform

dedicated
HW thread

per vCPU

3.7
5

GB

100
GB

Magnetic 1.11.2 HW
bridg

e

overlay COS 57

11 6 GCP,
Gke-

asia-

southeas
t

Jurong West,
Singapore

1 2.2 GHz Intel
Xeon E5 v4

(Broadwell)

dedicated
HW thread

per vCPU

3.7
5

GB

100
GB

Magnetic 1.11.2 HW
bridg

e

overlay COS 57

643963– SWITCH Dissemination level: PU

Page 41 of 55

12 6 GCP,

Gke-
asia-

southeas

t

Jurong West,

Singapore

1 2.2 GHz Intel

Xeon E5 v4
(Broadwell)

dedicated

HW thread
per vCPU

3.7

5
GB

100

GB

Magnetic 1.11.2 HW

bridg
e

overlay COS 57

13 7 GCP,
Gke-

asia-

northeast

Tokyo, Japan 1 2.2 GHz Intel
Xeon E5 v4

(Broadwell)

dedicated
HW thread

per vCPU

3.7
5

GB

100
GB

Magnetic 1.11.2 HW
bridg

e

overlay COS 57

14 7 GCP,
Gke-

asia-

northeast

Tokyo, Japan 1 2.2 GHz Intel
Xeon E5 v4

(Broadwell)

dedicated
HW thread

per vCPU

3.7
5

GB

100
GB

Magnetic 1.11.2 HW
bridg

e

overlay COS 57

Table 5-1 Testbed for ASAP functionality testing.

 Videoconferencing use-case

6.1 Use case description

To demonstrate ASAP functionality UL developed an event-driven VaaS (Videoconferencing as a Service)

system [13]. The developed system is based on Jitsi-meet open source components. It is a WebRTC based

multiparty videoconferencing solution that uses a real-time multimedia streaming based on RTP/UDP

protocols. The system does not use full-mesh (peer-to-peer) connectivity, instead it uses a centralized SFU

(Selective Forwarding Unit) based architecture. The application consists of several software components that

are handling signalization and media streams forwarding. The SFU component is called Jitsi Videobridge. It

is deployed in conjunction with a web server hosting JitsiMeet – a JavaScript WebRTC application that is used

by end-users through web browsers. The signalization of the application is based on XMPP/Jingle protocols

and is handled by Jicofo, a component that acts as a conference focus initiating sessions between the endpoints.

The system uses the XMPP-capable messaging server for messages exchange; for this component, we selected

the Prosody XMPP server.

In line with our event-driven approach, we do not intend to use a dedicated server(s) to host the VC services.

The service is created and destroyed dynamically for each individual videoconference. The overall architecture

of the developed prototype is presented on Figure 6-1.

Figure 6-1 Video-conferencing use case.

643963– SWITCH Dissemination level: PU

Page 42 of 55

In this picture multiple clusters are forming the testbed, but as will be shown in section 5,, our testbed was

actually composed of 14 machines in 7 different Kubernetes clusters, geographically distributed around the

world. In order to start the Jitsi-meet VC application instances in a form of Docker containers that are managed

by Kubernetes container orchestrator tool, we built Docker images of the components constituting the VC

application (https://github.com/switch-project/WP4-JitsiMeet/tree/master/JitsiMeetSeparateComponents/). It

is important to note that different application architectures could be considered when deploying the VC

services. The decision, which components would be shared between multiple tenants and across multiple VC

sessions and which of the components would be instantiated per VC session, had to be made. For example, the

signalling components that are needed to establish VC sessions, and are not computationally and bandwidth

demanding, neither do they request a low delay to the end users, could be centralized and shared by all the

customers of the VaaS service. However, we decided that we will completely isolate the VC sessions and

instantiate both signalling and media services. Therefore in our prototype for each new VC sessions all four

Docker containers (jvb , jicofo , prosody and nginx) are run.

The GUI access to the application and management of the application instances, the optimisation strategy

selection and application context capturing is provided through SIDE graphical user interface. Here a user can

provide the context of the application, and select optimisation strategy, that is then used by the ASAP

subsystem to select the appropriate machine where the service instance will be started. The context includes

the number of users that will participate in a videoconferencing session, the application configuration (Last-

N, simulcasting, user camera resolution, etc.) and the IPs/Geolocations of these users. The optimization

strategy allows to fine tune the decision-making process of the ASAP subsystem. In particular, the user can

select whether DM wants to optimise average QoS towards all parties or make it good QoS for some users,

while it is acceptable to be degraded for others, as can happen in the case that parties are widely spread

geographically.

The number of users and application configuration values are used to determine the appropriate amount of

CPU and network interface bandwidth resources that will be needed for the service instance. CPU and

bandwidth properties of the machine hosting SFU-based videoconferencing service are the properties that

critically influence the application QoE. CPU power is needed for coding/decoding and encrypting/decrypting

video streams. Network interface bandwidth should be high enough for transmission of video and audio

streams. SFU-based systems are in general CPU-efficient, but the trade-off is paid in less bandwidth efficiency

(if compared to MCU-based systems). Bandwidth efficiency of SFU-based systems is usually achieved by not

forwarding the streams of all users, instead the application can be configured that a selection algorithm decides

which packets to forward to which endpoints (this is called Last-N). The SFU-based systems can typically

receive multiple streams of various qualities, and then based on the current networking properties of the

connections to the clients choose which stream will be forwarded. This is called simulcasting. Therefore, to

determine the needed resources of the host machine not only the number of users is important, but also the

configuration of the application. If we know these properties, then the minimum required resources can be

calculated and used in the “filtering” phase of the Decision Making. Furthermore, the IPs/Geolocation of users,

which was provided as application context, is used to determine the region in which the service should be

instantiated. This information is then also used in the “filtering” phase, where from a large number of possible

VMs where to instantiate the service, a smaller subset of adequate VMs is calculated.

After the “filtering” phase ASAP has a short list of VMs that have adequate resources for the service and are

located somewhere close to the users. Since our VaaS platform is supposed to work on the open Internet, the

networking conditions between clients and servers are changing all the time. Therefore, in the “selection”

phase; the network level metrics are monitored for all of the VMs in the short (i.e. filtered) list in the real-time.

Then the best possible VM is selected according to the performance model. The output of the decision maker

is therefore the exact VM where the VaaS services (four application components described above) should be

started. It is important to note here that we make the assumption that only the SFU component (i.e. Jitsi

Videobridge) has stringent resource requirements. We assume that signalling components (Jicofo and Prosody)

and the web server serving the web application are not “resource hungry” if compared to the SFU component,

therefore the quality of the signalling phase before the videoconferencing session happens was not modelled

and taken into account.

643963– SWITCH Dissemination level: PU

Page 43 of 55

After the decision, making the Setup and Control component is called. This component uses the Fabric8

libraries to deploy the VC instance on the right VM machine. Since the architectural decision was made that

all four components will be instantiated for every videoconference call (i.e. all four component instances serve

only one VC session), it is logical that they are deployed together (on the same host machine), therefore the

four Docker containers are scheduled on Kubernetes cluster as a single Kubernetes pod.

6.2 Experiment description

In order to estimate the CPU and bandwidth requirements for the service instance, we performed an experiment

in which we were varying the number of users and we monitored the CPU consumption (section 6.2.1) and

bandwidth usage (section 6.2.2).

Since the service is intended to work over the best-effort public Internet, it is expected that by wise selection

of the location, where the service will be instantiated it will be possible to raise the achieved QoE level. In

order to see how the application quality depends on the selected location of the service we performed the

measurement of PSNR (chapter 6.2.3) and frame latency (chapter 6.2.4). Unfortunately, as will be explained

the measurement of PSNR failed.

In order to estimate if our event-driven (new service instance for every VC session request) approach is

acceptable by the user we measured the times that are needed for the service creation (the time Kubernetes

needs to instantiate the Pod) – see section 6.2.5.

6.2.1 CPU consumption

SFU-based VC systems only copy and forward user packets and should be less CPU demanding than MCU-

based systems, which perform video coding/decoding/mixing as well. However, the CPU resources consumed

by SFU units are still substantial. This can be explained by the use of Secure Real-time Transport Protocol

(SRTP). Each packet has to be decrypted and encrypted again to be transmitted to each of the participants as

every connection has its own encryption keys. This, combined with the very high bit-rate of the media, is a

CPU intensive process. To estimate how the CPU requirements of SFU unit vary with a growing number of

users (that are participating in the same videoconference session) we used a benchmarking tool called Jitsi

Hammer. With this tool, we were able to simulate a varying number of users, while we used our monitoring

system to record the CPU consumption level on the machine hosting Jitsi Videobridge (SFU unit).

On machine 5 in cluster 3, (see Table 5-1) we run a Docker container containing Jitsi Videobridge. We selected

one of the Google machines for testing – because it does not use overlay networking inside Kubernetes cluster,

which could further deteriorate the CPU usage. The Docker image was prepared so that the logging of the Jitsi

Videobridge was disabled. This is important since the logging in Kubernetes with its Fluentd and Elasticsearch

(https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/fluentd-elasticsearch/fluentd-es-image)

mechanisms can use a substantial amount of CPU power.

Then we started the Jitsi Hammer benchmarking tool on some other machine. However, the Jitsi Hammer does

not use the single UDP port (port 10000) option of the Videobridge. This is why we could not start Jitsi

Hammer on machines that are outside the Kubernetes cluster hosting the Videobridge service. Anyway, it is

better to start the Hammer on a machine that is on the same LAN, since the networking between the two

machines should be fast enough to handle all of the traffic (we are studying CPU, not network). Therefore, we

developed a Docker image containing the Hammer tool. Then we started the Hammer, and signalling part of

VC services (nginx, jicofo, prosody) on machine 6 in cluster 3. We had to make sure that this machine was not

the bottleneck, so we temporarily (for the duration of the test) increased the resources of the machine (it was

upgraded to n1-standard-2 with 2vCPU and 7.5GB memory). For the simulation of users, we used a video file

that is included in the Hammer tool (badger-audio.rtpdump and badger-video.rtpdump -

https://github.com/jitsi/jitsi-hammer/tree/master/resources). The configuration Last-N, adaptiveLastN,

simulcasting, video muting and congestion control configuration of the VC application were all disabled. Then

we started the Hammer tool 13 times simulating 1,2,3,4,5,7,10,13,14,15,16,17, and 18 users in a VC session.

In every run, we monitored the CPU consumption for 120 seconds, each second taking one measurement. We

measured both CPU consumed by the container (Figure 2-1, blue line) and the CPU consumed by the VM

643963– SWITCH Dissemination level: PU

Page 44 of 55

(Figure 2-1, red line). Then we calculated the average and standard deviation of these measurements. We

obtained the following graph:

Figure 6-2 Average CPU consumption.

The graph shows that on the n1-standard-1 VM with 1CPU (single hardware hyper-thread on a Broadwell 2.2

GHz Intel Xeon E5 v4 processor) and 3.75GB RAM the average VM CPU usage reaches 80% with

approximately 15 users in the same VC session.

6.2.2 Bandwidth usage

The same experiment (the same machines and configuration) described in the previous chapter was conducted,

but this time we were measuring the bandwidth of the media streams on the network interface of Videobridge.

We measured the received packets (coming from simulated users to Videobridge – Avg. NET rx.) and

transmitted packets (forwarded from Videobridge to simulated users – Avg. NET tx.). The obtained graph is

presented in Figure 6-3.

Figure 6-3 Bandwidth usage.

643963– SWITCH Dissemination level: PU

Page 45 of 55

We can see from the graph that the required bandwidth for receiving video streams on the Videobridge network

interface grows linearly with number a of users. This is because each user is sending only one video stream to

the Videobridge. On the other hand, the required bandwidth for sending (forwarding) video streams on the

Videobridge network interface grows quadratically with the number of sending endpoints (users). This is

because the number of forwarded video streams increases quadratically with the number of users, because each

of the users also acts as a destination that traffic from everyone else needs to be delivered to. Of course this

assumes that the Last-N configuration is disabled, representing the worst-case scenario where every user in the

VC session wants to see all other participants.

6.2.3 PSNR

In this experiment, we run the VaaS service on geographically distinct VMs. The QoS metric in this case is

PSNR (Peak Signal-to-Noise Ratio), a metric that represents the amount of video distortion between the

transmitted and received the video stream. The final goal of this experiment is to find the correlation between

the low-level network metrics, which can be measured by our monitoring system (bandwidth, delay and jitter

between clients and SFU) and achieved the quality of the videoconference in terms of PSNR. If such

correlation is found it would be possible to determine the best location where the SFU service should be started,

according to the measured values (bandwidth, delay and jitter between clients and SFU).

The transmission related video degradation, measured with PSNR metric is mostly related to the video packet

loss on the entire communication path. This includes loss at intermediate routers, as well as loss related to

buffer overflow at either receiver and/or sender side. Another source of video degradation is due to the video

resolution resampling and the amount of the video compression applied at the sender side. The video codecs

used in WebRTC apply lossy compression techniques to the video obtained from user’s camera. The client

dynamically adapts its bitrate to the network conditions by selecting the appropriate video resolution and video

compression level. The clients are running a congestion control algorithm known as the GCC (Google

Congestion Control) algorithm. The receiver estimates the available throughput capacity based on variation in

frame inter-arrival times and the Receiver Estimated Maximum Bandwidth (REMB) and a RTCP report is sent

to the sender for performing congestion control. This suggests that the video quality degradation is not a simple

function of the video slices loss (due to packet loss on lower network levels) but other network characteristics

are important as well. The correlation functions between network parameters and PSNR value is therefore an

extremely complex function. In order to model this function we would require a testbed capable of precisely

controlled variations of the various network properties (throughput, delay, jitter, buffer sizes, etc.) and each of

these should be controllable in isolation from the others. Unfortunately, we do not have such a testbed. The

purpose of this experiment was therefore just to estimate if the geographical positioning of service influences

on the measured PSNR value at all. Therefore, we run the service on the 14 machines of our testbed and

evaluated the PSNR obtained.

The PSNR value was measured with the Jitsi Torture benchmarking tool. This tool is used to unit-test the

application, therefore performs various functionality tests, and among them also the PSNR calculation. The

PSNR test is based on stamping the input video with QR codes, sending this video through Videobridge back

to the same application (client), capturing the received frames, finding the corresponding input frames (based

on QR code identification) and calculating the PSNR value. Of course, since we are studying the impact of the

intermediate network on the PSNR, we have to make sure that both the machine with Jitsi Torture and

Videobridge have enough CPU, RAM and high-bandwidth network interfaces.

In our preliminary tests, we first prepared the input video/audio stream data, which is requested by Jitsi Torture

tool. We obtained 1280x720pix, 60fps video file (KristenAndSara_1280x720_60.y4m) from

https://media.xiph.org/video/derf/y4m/. This video is appropriate for the PSNR assessment since it contains a

lot of movement. We run scripts to annotate the video with QR codes and decompose video into .png images

(used when calculating PSNR of each individual frame). Then we run the Jitsi Torture test and measured the

obtained PSNR when streaming through any of the 14 machines in our testbed. Unfortunately we obtained

more or less the same values for each experiment – indicating that there is no PSNR difference if we setup

Videobridge in Taiwan or if we set it up very close to our faculty (on Arnes). This was somewhat surprising

and we then run normal videoconference through different machines – and observed (human observer) the

quality. What we found out (with our human eyes) is that the blocking artefacts that are a symptom of packet

643963– SWITCH Dissemination level: PU

Page 46 of 55

loss never occur – regardless where is the Videobridge. However, we noticed that the video “freezing” occurs

substantially more often if Videobridge is far away. Obviously the packet loss and/or delay manifests in video

“freezing” and not blocking artefacts. However, Jitsi Torture with its PSNR calculation based on QR code

identification is not capable of detecting video “freezing” – therefore we should find some other tool for PSNR

calculation (that takes into account also the “freezing”).

6.2.4 Frame latency

Videoconferencing applications, besides low packet loss, require also low media delay (voice and video). Such

delays affect interactive human communication, and therefore knowing the delay is a major factor in judging

the expected quality of experience of the conferencing system. For video, the delay can be measured in terms

of delays of individual video frames – i.e. the time from when the video frame was captured with sender camera

to the time when the same frame was rendered on the receiver screen. Frame delay is caused by processing of

media streams on the entire communication path (sender encoding, SFU processing, receiver decoding etc.)

and by network latency (buffering and routing in the intermediate switches and routers, propagation delay

etc.). For the purpose of the frame delay measurements, we choose VideoLat measurement tool

(http://www.videolat.org/). VideoLat can measure roundtrip video delay of a complete video chain (requires

only one VideoLat device), and one-way video delay measurements (requires two VideoLat devices). In our

experiment, we measured roundtrip video delay. The purpose of the experiment was to find out if the location

of the SFU unit affects the round trip frame delay. We measured the frame delay for all 14 different machines

in our testbed (there was an error in measurements on machine gke-asia-northeast-2 – so the results for this

machine can be ignored). Alongside with frame delay we measured also the packet delay on network layer.

We used PING tool. Both videoconferencing clients were located at our premises at the faculty. We made sure

that both clients and SFU had plenty of compute resources to handle the two-user VC session. The client

machines were two laptops with Intel® Core™ i7-4710MQ processors, 16GB RAM, 64bit WinOs, and

Chrome browsers for videoconference establishment. The results that we obtained are presented in Figure 6-4.

Figure 6-4 Frame latency.

The graph shows that the frame delay rises with the distance between SFU and our two video conferencing

clients (located in Slovenia). As can be seen the delays are highest with machines located in Asia (Taiwan,

Singapore, Japan), then machines in US follow (Oregon), and then machines in Europe (UK, Belgium,

Slovenia). What is surprising is that the frame delay is much higher than the network-level delay measured

643963– SWITCH Dissemination level: PU

Page 47 of 55

with PING. The processing of the media on clients and centralized SFU obviously introduces a substantial

amount of delay. Again, to find out how exactly are the network-level delay and application-level frame delay

correlated, we would require a (simulated) testbed capable of precisely controlled variations of the network-

level delay.

6.2.5 Service start-up time

The time from the request for a service, to the actual creation and availability of the service is very important

to the users. If the sum of phases 1, 2, 3 in is too large then the users will not be satisfied with the service. In

this experiment, we measured the duration of the container deployment phase. The time of Context Capturing

and Decision-making are not taken into account in this experiment. Since we are deploying the containers with

Kubernetes, and all four VC containers are deployed as a single Kubernetes pod, we actually measured the

time from the command for pod creation that was sent to the Kubernetes cluster, until the notification/callback

indicating that the pod (and all four containers inside) is in “running” phase. The time of deployment was

measured on two different machines (Arnes-1 and FlexiOps-1) and in two different scenarios: 1) Docker

images already present on the host machine (indicated by “only run”), and 2) Docker images not present on

host machine and need to be pulled from Docker registry (indicated by “pull + run”).) All four Docker images

were located in public Docker Hub registry. Uploading container images to a registry allows Docker hosts to

pull down the image and spin up container instances by simply knowing the image name. However, the

downside to having images in registries is that they are not local to the network on which the application is

being deployed. This means that every layer of every deployment might need to be downloaded across the

Internet in order to deploy an application. As it will be shown, the Internet latencies can have a big impact on

software deployments. The sizes of the four images were the following: Jicofo=982MB, JVB=720MB,

nginx=409MB, prosody=254MB. It is important to note that it is not necessary to transfer all

982+720+409+254MB of data when pulling the four Docker images, since Docker images are built in layers

and some of these layers shared between different images. This can be then optimized by good image layering

design and thin layers between image versions, which are easy to move around the Internet. The obtained

results are presented in Table 6-1.

Table 6-1 Service start-up time.

From the results, it is clear that the actual service creation time is relatively short and consistent from

experiment to experiment. In general, it takes around 5 seconds to start all four VC services in a form of single

Kubernetes pod in case all four Docker images are already present on the machine where services are started.

However if the images have to be pulled from Docker registry beforehand, the time for service creation is

considerably higher, and it can vary from experiment to experiment (e.g. from 118 seconds to 579 seconds on

Arnes-1 machine). The reason for this is that high amounts of data need to be transferred from the image

storage server to the machine where we want to instantiate the service. There are a number of varying

parameters affecting this transfer time: network bandwidth changes over time, the I/O speed of the storage

varies over time, etc. From the experiment performed on Arnes-1 machine, we observed that in first

experiment, the time to obtain the images from Docker Hub and run them was 579 seconds, and this time was

rapidly falling with subsequent requests. The exact physical location of the images in Docker Hub was

unknown to us, and we believe that the difference in pull times comes from Docker Hub using CDN for content

pull+run [ms] only run [ms] pull+run [ms] only run [ms]

1 579268 5046 334273 4883

2 426866 6090 310815 5439

3 290720 5796 306856 4728

4 152784 4879 304379 4654

5 151140 4642 302163 4895

6 129751 5966 305383 4570

7 131279 8108 303439 4355

8 118000 4150 303728 4951

Exp. #

Arnes-1 FlexiOps-1

643963– SWITCH Dissemination level: PU

Page 48 of 55

delivery. It seems that the CDN moved images to storage servers that are located closer to our Arnes-1 machine

when we made several subsequent requests. The experiment on FlexiOps-1 machine was performed after the

Arnes-1 experiment. Since both of these machines are located in Europe, we believe that in the case of

FlexiOps-1 experiments the image was already somewhere in “European region” – and the times did not

change much with further subsequent requests. This shows us two things: 1) the time needed to pull the images

from storage is considerably higher than the time needed to actually start the images, and 2) the pull time is

highly varying, depending on the storage performance, and the networking conditions during data transfer. To

obtain the consistent service start-up-times it is better to pull the images to the potential machines where

services will be started in advance, before the request for the service instantiation comes.

 File Upload use-case

7.1 Use case description

File Upload is a simple use case, which – unlike videoconferencing – involves a single end-user participant in

the service request: an end-user wants to upload a file to a remote location. Traditionally, she is expected to

visit a certain web page that allows uploading files and then to perform an upload by selecting a local file for

upload. For large files, an upload might take some time to complete and can contribute to a sluggish experience

of the end-users, especially if perceived upload is slow and/or fails during the data transfer. Within SWITCH,

ASAP tries to improve upon QoS of the application and hopefully to address the QoE aspect, depending on

how well is QoS, as defined by the application developers, related to the QoE. Through SIDE the end-user

first requests to start the File Upload service and then ASAP has to decide in which cluster to start the

corresponding container resembling the File Upload service. To this end, ASAP utilizes the monitoring system

to perform certain measures about the current load on the clusters and to determine the network conditions

between the end-user and the available clusters. The decision for service placement is made based on the QoS

model stored in KB and the observed conditions. After the decision is made, the service is started and the end-

user can interact with the File Upload application as usual. Finally, when the file is uploaded, the container

service can be stopped and its resources released. However, in a real-case scenario the service might want to

store the file in a permanent storage before the container is destroyed. File Upload was developed as a simple

Tomcat servlet.

7.2 Experiment description

The primary goal of the experimental evaluation was to evaluate the Performance model generator component

of the ASAP subsystem. The required input for this component is a set of metrics defined by the application

developers. One of the expected metrics is the QoS.

7.2.1 Metrics for the QoS model

For File Upload we defined metrics shown in Table 7-1.

Metric Description

Upload time [s] File upload time in seconds.

Upload speed [B/s] Upload speed or the goodput expressed in bytes per second.

File size [B] Size of the uploaded file in bytes.

RTT [s] Network packet round-trip-time in seconds between the end-user and the

cluster.

Jitter [s] Network packet RTT jitter (i.e. standard deviation) in seconds between the

end-user and the cluster.

Packet loss [%] Percentage of lost packets between the end-user and the cluster.

643963– SWITCH Dissemination level: PU

Page 49 of 55

Metric Description

Hops Number of hops on the network path between the source and the target

endpoint.

Container startup time [s] The time in seconds to start the container.

Tomcat startup time [s] The time in seconds to start the File Upload service.

Total time [s] The total time in seconds of the container provision time, the Tomcat start

time and the file upload time combined.

CPU usage [%] Average CPU usage on the VM in the cluster during servicing file upload

request (and possibly few others).

CPU iowait [%] The percentage of CPU time used in waiting for significant I/O operation

to complete.

Free memory [MB] Average amount of free main memory on the observed machine during the

file upload event.

I/O read [KB/s] Average I/O read during servicing file upload in kilobytes per second.

I/O write [KB/s] Same as I/O read but for write operation.

Normalised upload speed [B/s] The QoS metric: defined as “File size” / “Total time”.

Table 7-1 File Upload use case input metrics for the Performance model generator.

Upload time, upload speed, file size, total time and normalised transfer speed are application specific metrics.

Of those, upload time, upload speed and file size directly depend on each other, as upload speed is expressed

as the quotient between file size and upload time. The “Normalised upload speed” is also an application-level

metric and is similar to “Upload time”, but it incorporates also container and service startup times. These two

metrics, however, do not depend on the file size, but rather on the characteristics of the VM and the respective

container image – its size, the proximity of the cache locations and the quality of the network connections

between the image (cache) repository and the cluster. The “Normalised transfer speed” was chosen as the QoS

metric, because it directly relates to the perceived speed of the end-user when uploading files. All of these

metrics can be measured either on a client or on a server side, but the measurements might slightly differ (i.e.

the server observes shorter times than client does).

RTT, jitter and packet loss are network-level metrics that are measured between two endpoints. It is common

to measure them with ping utility using ICMP, but other protocols and tools are possible too. A number of

hops can be measured with traceroute or tracepath utilities, but the exact network path taken by successive

packets might differ. The presence of firewalls and NATs on either side present challenges in measuring these

metrics, but the resolution to this problem is out of scope.

Container and service startup times are metrics specific to our event-driven approach, as multi-tenant with

instantly on services do not have to start the service first, except in auto-scaling and migration scenarios. These

two metrics have been already discussed in Section 6.2.5.

CPU usage and CPU iowait can be measured on the container- or VM-level. CPU usage is always greater or

equal to CPU iowait as the later is incorporated into the former. File Upload is not CPU demanding application,

although with pre-emptively scheduled vCPUs of VMs on host machines and network-accessed VM disks the

I/O wait can be significant.

Finally, I/O read and write are related to VM disk utilisation. Due to buffering, they might occur in batches,

when for write operations buffers are filled up or when reading unbuffered content.

Not all non-QoS metrics presented in Table 7-1 are suitable for our QoS modelling. These include application-

level metrics, because they cannot be measured prior to application start up. Next, “File size” was required in

order to compute the QoS metric and the “Upload speed”, but is not particularly useful for the QoS model. For

the rest of the metrics, their relevance to the QoS model is not clear, as some might be affected due to the

643963– SWITCH Dissemination level: PU

Page 50 of 55

application. For example, I/O write or CPU iowait might increase due to File Upload application writing

uploaded content on the disk, but only during that time. Therefore, these metrics might require the application

running and performing upload during the measurements requested by the decision-making process, prior to

the application deployment. On the other hand, the decision maker might know how to use them by knowing

the general performance characteristics of the clusters and without having to run the application during the

decision-making process.

7.2.2 Measurements

With monitoring system deployed on the entire target clusters of the experiment, the metrics’ values were

populated by simulating file uploads from a single client location towards the services deployed in several

geographically dispersed clusters. Files in transport were of different sizes: 1 kB, 10 kB, 100 kB, 1 MB, 10

MB and 100 MB. The content of these files was randomly generated to avoid the undesired effects of HTTP

requests body compression. Client application used was curl command utility. Every test was repeated 20

times. During each application session, all of the metrics were populated. Every file upload event corresponds

to a single entry in a metrics table, which means that over a time window of the event duration, interval metrics

were aggregated into a single, averaged value. To avoid Docker image pull delays, the File Upload container

image was pre-pulled on all the machines involved in the experiment.

Figures Figure 7-1,

Figure 7-2,

Figure 7-3 show measurements of the metrics from Table 7-1 for the File Upload application deployed and

executed on five different clusters. The RTT (Figure 7-1(A)) and the number of hops (

Figure 7-2 (A)) are good estimators of the upload speed in our case, with flexiOps being an exception. It relates

well with the proximity of the servers relative to the client, as well as with the average upload speed. Quite

surprisingly, the Tomcat service start up time,

Figure 7-1(B), was in our case the main candidate for optimisation, because for the average file size of 18.5

MB, the most time was spent in Tomcat startup time. The reason for this is believed to be due to the

initialisation of secure strings during Tomcat starting, which relies on random source of numbers. Because the

source of random on Linux operating system partially relies on non-deterministic source provided by human

users through input devices, the source (known as an entropy) is limited for servers, due to the lack of the user

input, compared to desktop computers. Therefore, the source of randomness is slow. It is possible to mitigate

this issue either by installing an additional service, which introduces randomness, or by using cryptographically

less secure, albeit faster counterpart. Clearly, no single non-QoS metric is an exact predictor of the QoS metric.

(B) Average upload time, container and service

startup times.

(A) RTT(shown as bars) and jitter(shown as y error

bars).

643963– SWITCH Dissemination level: PU

Page 51 of 55

Figure 7-1 Average upload time, startup time, RTT and number of hops.

Figure 7-2(A) shows the network packet loss and the number of hops. The plot indicates 8% packet loss for

GCP Asia East region, but in fact, it occurred less frequently, if at all. The reason is in the measuring

methodology, in which RTT ping timeout was set too low. As a result, the last packet in a sequence timeouted

before it was able to be confirmed. Instead of repeating the measurements, the packet loss was left as a noise

to the QoS modeller.

Figure 7-2 Network packet loss, number of hops, CPU usage, I/O wait percentage.

Figure 7-2(B) shows the average CPU usage and I/O wait percentage of time. Intentionally a low-priority CPU

load was put on GCP in Asian and US regions to disturb the QoS modeller. High CPU usage for Arnes relates

to short upload times, as most CPU time was spent in starting up the service and not in servicing the file upload

itself. Due to the high upload rate, CPU I/O wait was quite noticeable on Arnes. Furthermore, judging only by

the upload speed (

Figure 7-3), Arnes would have been a clear winner, but relatively high service startup time made it second in

the EU region. As a result, GCP showed the best results.

(B) Average CPU usage and I/O wait percentage of

time.

(A) Network packet loss and the number of hops.

(A) Average I/O read and write load.

(B) Upload speed and normalised upload speed,

QoS metric

643963– SWITCH Dissemination level: PU

Page 52 of 55

Figure 7-3 Average I/O read, write load and upload speed

7.2.3 QoS model

Starting with the full set of measurements presented in Section 7.2.2, which in total contains 150 examples, 30

per each of the five clusters, the Performance diagnoser Model Generator component of ASAP computes a

QoS model as depicted in Figure 7-4, where the metrics are sorted according to their magnitude. Negative

values suggest that the respective metrics should be minimised for better QoS, while positive metrics should

be maximised. The model ranks highly I/O write, upload speed, packet loss and file size metrics. Unfortunately,

only the packet loss is to some extent possible to estimate prior to execution of the application. Besides, we

intentionally introduced some noise for the packet loss. The upload speed (or the goodput) metric seems

reasonable selection, but is an application metric. We could replace it with throughput metric, which should

relate well to the upload speed, and is measurable without having the application running. As CPU iowait

metric was only noticeable on Arnes cluster, and depends on the high demand for I/O write operations, it is

not a good predictor for the QoS. However, since on Arnes cluster upload alone never lasted more than four

seconds, higher CPU iowait time as compared to the other clusters is somewhat reasonable. However, the QoS

model does not appear to agree with this reasoning, because the corresponding value for CPU iowait is

negative. It rather suggests that CPU iowait observations from the other clusters contributed more to this

metric. Number of network hops metric received similar weight than CPU iowait, but is instead a better

selection in our opinion.

Figure 7-4 The QoS model.

In another experiment, we were interested in building QoS model from only a subset of observations and were

curious what is the impact of the size of the subset and the ordering of the observations on the resulting QoS

643963– SWITCH Dissemination level: PU

Page 53 of 55

model. In particular, the original metrics table was reduced to a table of multiples of 10 percentage of the

original set, for all the multiples between 10% and 100%. The observations appeared sequentially in a cluster-

major ordering, i.e. starting with one cluster and then continuing with the next. If the subset was formed of the

sequential observations, smaller subsets led to very different results compared to the reference QoS model

built from the full set. In this way, small subsets contained mostly observations from one cluster and were

therefore biased toward a single cluster behaviour. Randomly sampled subsets tend to perform better, meaning

that even small subsets resulted in a model resembling the reference one. This is important information for at

least two aspects: for parallel computation of a QoS model and for updating QoS model from several sources.

However, more research is needed to find out whether it is better to independently build intermediate QoS

models, each from its own source, and then combine the models into a single one, or is it better to interleave

the observations from various sources before computing the model.

 Summary

8.1 Software functionality in public releases

Architecture

components

(defined in D2.2)

Functionality in V1 Functionality in

V2

Key

Performance

Indicators (KPI)

Current status

Monitoring Server Yes Yes Functionality Implemented

Monitoring Agent Yes Yes Functionality Implemented

Alarm-Trigger Yes Yes Functionality Implemented

Performance

diagnoser Model

Generator

Yes Yes Functionality,

robustness,

updatability

Partial: needs more

evaluation

Performance

diagnoser Decision

Maker

Yes Yes Functionality,

speed

Partial: needs more

evaluation

Setup & control Yes Yes Functionality Achieved KPI

Knowledge Base

API

Yes Yes Functionality,

data management

Achieved KPI

8.2 Innovation

Component (in release) Current state of the Art Innovation

Monitoring Server Receiving measured metrics from the

Monitoring Agent.

Addressing the requirement of

containerized applications.

Monitoring Agent Receiving monitoring data from

containers.

Lightweight monitoring approach based

on a non-intrusive design.

Alarm-Trigger Checking the incoming monitoring

data and notifying other components

of the system.

Checking the incoming monitoring data

measured in different levels such as

infrastructure level, container level and

application level.

Performance diagnoser

Model Generator

Accurate QoS models require a vast

number of measurements and uses

substantial computational power;

models may be also hard to update

and do not adequately address

dynamic nature of clouds.

Qualitative approach to QoS modelling

trades less precision for higher

efficiency. Model is easy to compute

and update from observations and does

not put restrictions upon observable

metrics. It also does not require a lot of

observed data.

Performance diagnoser

Decision Maker

Most works focus on always-on

services and geolocation information.

By using the QoS model and pre-

deployment measurements, it starts

containers on-demand and per-event,

643963– SWITCH Dissemination level: PU

Page 54 of 55

tailored to improve QoS towards end-

users involved in the event.

Setup & control Orchestrators such as Kubernetes,

Mesos, Marathon

No innovation – uses Kubernetes.

Knowledge Base API Queries per second manageable over

RDF triple store. Supported semantic

data providing and inference (through

reasoning) approaches among specific

domains.

Supporting algorithms through a RDF

using semantic approach by providing

filtered input data to reduce overall

execution time.

 Bibliography

[1] S. Taherizadeh, V. Stankovski, J. Trnkoczy, U. Paščinski and M. Breška, “D4.1 Prototype runtime

monitoring system,” SWITCH consortium, 2016.

[2] M. Cigale, V. Stankovski, J. Trnkoczy, S. Taherizadeh, S. Gec, P. Štefanič, U. Paščinski and M.

Breška, “D4.2 Design specification of the ASAP subsystem,” SWITCH consortium, 2016.

[3] M. Cigale, V. Stankovski, J. Trnkoczy, S. Taherizadeh, S. Gec, M. Breška, P. Štefanič, P. Kochovski,

J. Česnik and U. Paščinski, “D4.3 Learning strategies for self-adaptive control mechanism for time

critical Cloud applications,” SWITCH consortium, 2017.

[4] K. Evans, A. Jones, P. Martin, F. Quevedo, D. Rogers, I. Taylor, V. Stankovski, A. Taal, S.

Taherizadeh, J. Trnkoczy, J. Wang, Z. Zhao, BEIA, MOG and W. T. teams, “D2.1 Technical

Requirements and State of the Art Review for Time-Critical and Self-Adaptive Applications in Cloud

Environments,” SWITCH consortium, 2015.

[5] P. Štefanič , D. Kimovski , G. J. Siciu and V. Stankovski, “Non-Functional Requirements Optimisation

for,” in Cloud and Big Data Computing, San Francisco, USA, 2017.

[6] P. Kochovski and V. Stankovski , “[Under review] Supporting smart construction with dependable

edge computing infrastructures and applications,” Automation in Construction, no. Special Issue on

Smart Infrastructure, Construction and Building Internet of Things, 2017.

[7] S. Taherizadeh and V. Stankovski, “Quality of Service Assurance for Internet of Things Time-Critical

Cloud Applications,” in 6th International Congress on Advanced Applied Informatics (AAI 2017),

Hamamatsu, Japan, 2017.

[8] D. Trihinas, G. Pallis and M. D. Dikaiakos, “Jcatascopia: Monitoring elastically adaptive applications

in the clou,” in 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), 2014.

[9] S. Taherizadeh and V. Stankovski, “Incremental Learning from Multi-level Monitoring Data and Its

Application to Component Based Software Engineering,” in 41st Annual Computer Software and

Applications Conference (COMPSAC 2017), Turin, Italy, 2017.

[10] S. Taherizadeh and V. Stankovski, “Dynamic Multi-level Rules for Container-based Elastic

Applications. [Under review],” The Computer Journal, 2017.

[11] M. . V. Butz, “Learning Classifier Systems,” in Springer Handbook of Computational Intelligence,

Berlin, Heidelberg, Springer, 2015, pp. 961-981.

[12] S. Gec, D. Kimovski, P. Uroš, R. Prodan and V. Stankovski, “Semantic approach for multi-objective

optimisation of the ENTICE distributed Virtual Machine and container images repository,”

Concurrency Computat: Pract Exper, no. e4264, 2017.

[13] J. Trnkoczy, U. Paščinski, S. Gec and V. Stankovski, “SWITCH-ing from multi-tenant to event-driven

videoconferencing services,” in 1ST WORKSHOP ON AUTONOMIC MANAGEMENT OF LARGE

SCALE CONTAINER-BASED SYSTEMS co-located with the 2017 IEEE International Conference on

Cloud and Autonomic Computing (ICCAC), Arizona, USA, 2017.

643963– SWITCH Dissemination level: PU

Page 55 of 55

[14] P. Kochovski and V. Stankovski, “Data-centric systems and dependability. [In press],” in Security and

Resilience in Intelligent Data-Centric Systems and Communication Networks, Elsevier, 2017.

[15] P. Štefanič, M. Cigale, A. Jones and V. Stankovski, “Quality of Service models for Micro-services and

their integration into the SWITCH IDE,” in 1ST WORKSHOP ON AUTONOMIC MANAGEMENT OF

LARGE SCALE CONTAINER-BASED SYSTEMS co-located with the 2017 IEEE International

Conference on Cloud and Autonomic Computing (ICCAC), Arizona, USA, 2017.

[16] U. Paščinski , S. Gec , J. Trnkoczy , M. Cigale and V. Stankovski, “Orchestrating Containers Across

Software Defined Data Centres, [Major revision June 2017],” Journal of Grid Computing, no.

Springer, 2017.

Abbreviations

Abbreviation Expansion

API Application Programming Interface

ASAP Autonomous Self-Adaptation Platform

CPU Central Processing Unit

CQL Cassandra Query Language

DRIP Dynamic Real-time Infrastructure Planner

GCC Google Congestion Control

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

I/O Input/Output

IP Internet Protocol

JSON JavaScript Object Notation

KB Knowledge Base

OS Operating System

PSNR Peak Signal to Noise Ratio

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

REMB Receiver Estimated Maximum Bandwidth

REST Representational State Transfer

RTCP Real-time Control Protocol

RTT Round Trip Time

SFU Selective Forwarding Unit

SIDE Switch Interactive Development Environment

TSDB Time Series Database

VM Virtual Machine

VaaS Videoconferencing-as-a-Service

WAR Web archive

XMPP Extensible Messaging and Presence Protocol

