
 

D3.4 Technical 
description of the DRIP 

subsystem 

 
 
 
 
 

Software Workbench for Interactive, Time Critical and Highly self-adaptive Cloud applications 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 643963 (SWITCH project). 

Start date of project: 01.02.2015. Duration: 36 months until 31.01.2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Dissemination Level 
PU Public 
CI Classified, information as referred to in Commission Decision 2001/844/EC. 
CO Confidential, only for members of the consortium (including the Commission Services) 
**Type 
R Document, report (excluding the periodic and final reports) 
DEM Demonstrator, pilot, prototype, plan designs 
DEC Websites, patents filing,  press & media actions, videos, etc. 
OTHER Software, technical diagram, etc. 
  

Due Date: 31st July 2017 

Delivery: 31st July 2017 

Lead Partner: UvA 

Dissemination Level*: PU 

Type**: R 

Status: Draft 

Approved: All partners 

Version: 1.0 



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 2 of 61 

Contributors 

Contributors Role 

Paul Martin, Cees de Laat, Zhiming Zhao Editors 

Junchao Wang, Huan Zhou, Yang Hu, Arie Taal, Spiros Koulouzis Content contributors 

Vlado Stankovski, Guadalupe Flores Internal reviewers 

Document history 

Version Date Author Description 

0.1 30/6/17 Paul Martin Compilation of inputs to deliverable. 

0.2 4/7/17 Paul Martin First integration pass complete. Some minor 
details to refine. 

0.3 5/7/17 Paul Martin Fixed mathematical typesetting and 
bibliography. Minor corrections to text. 

0.4 6/7/17 Paul Martin, Spiros 
Koulouzis 

Added API and data type details as appendices 
to document. 

1.0 17/7/17 Paul Martin Revised deliverable to address the comments of 
the internal reviewers. 

Keywords 

Cloud, programmable infrastructure, planning, infrastructure provisioning, application deployment, 
runtime control, time-critical applications.  



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 3 of 61 

Table of Contents 

EXECUTIVE	  SUMMARY	  .............................................................................................................................................	  4	  
1	   INTRODUCTION	  ..................................................................................................................................................	  5	  
2	   IMPLEMENTATION	  ARCHITECTURE	  AND	  SOFTWARE	  ..........................................................................	  8	  
3	   INFRASTRUCTURE	  PLANNING	  FOR	  SWITCH	  APPLICATIONS	  ............................................................	  12	  
3.1	   INFRASTRUCTURE	  PLANNING	  REVIEW	  ..........................................................................................................................	  12	  
3.2	   INFRASTRUCTURE	  PLANNER	  EVALUATION	  ...................................................................................................................	  14	  
3.3	   QOS-‐AWARE	  VIRTUAL	  SDN	  NETWORK	  PLANNING	  REVIEW	  ......................................................................................	  19	  
3.4	   SDN	  NETWORK	  PLANNING	  PROBLEM	  SPECIFICATION	  ...............................................................................................	  20	  
3.5	   EVALUATION	  ......................................................................................................................................................................	  22	  

4	   DYNAMIC	  CLOUD	  PERFORMANCE	  INFORMATION	  ................................................................................	  25	  
4.1	   STATE	  OF	  THE	  ART	  ............................................................................................................................................................	  25	  
4.2	   CLOUD	  PERFORMANCE	  COLLECTOR	  ...............................................................................................................................	  26	  
4.3	   PERFORMANCE	  DATA	  COLLECTION	  EXPERIMENTS	  .....................................................................................................	  27	  
4.4	   DISCUSSION	  ........................................................................................................................................................................	  33	  

5	   INTER-‐LOCALE	  VIRTUAL	  CLOUD	  PROVISIONING	  ..................................................................................	  34	  
5.1	   CHALLENGES	  AND	  GAPS	  ...................................................................................................................................................	  34	  
5.2	   METHODOLOGY	  AND	  USE	  .................................................................................................................................................	  34	  
5.3	   EVALUATING	  NEW	  DEVELOPMENTS	  ..............................................................................................................................	  38	  
5.4	   SUMMARY	  ...........................................................................................................................................................................	  40	  

6	   DEADLINE-‐AWARE	  DEPLOYMENT	  FOR	  SWITCH	  APPLICATIONS	  .....................................................	  41	  
6.1	   PROBLEM	  SPECIFICATION	  ................................................................................................................................................	  41	  
6.2	   METHODOLOGY	  AND	  IMPLEMENTATION	  ......................................................................................................................	  42	  
6.3	   EVALUATION	  ......................................................................................................................................................................	  45	  
6.4	   SUMMARY	  ...........................................................................................................................................................................	  48	  

7	   CONCLUSIONS	  ....................................................................................................................................................	  49	  
BIBLIOGRAPHY	  ........................................................................................................................................................	  53	  
A	   RESOURCE	  API	  ..................................................................................................................................................	  58	  
B	   DATA	  TYPES	  ......................................................................................................................................................	  60	  

 

  



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 4 of 61 

Executive summary 
The SWITCH workbench is composed of three autonomous subsystems, each of which is primarily 
responsible for handling one of the three major phases of the SWITCH application lifecycle: development, 
provisioning and runtime control. The Dynamic Real-time Infrastructure Planner (DRIP) is the 
subsystem of SWITCH that handles the provisioning of virtual infrastructure for time-critical applications 
within cloud environments. In order to provision an infrastructure suitable for hosting a time-critical 
application however, it is necessary to produce a plan describing the topology and composition of a virtual 
infrastructure that can be realised using the services of either a single cloud provider or possibly a federation 
of providers. It is also necessary to be able to automatically retrieve and install application components on 
the provisioned infrastructure. The purpose of this deliverable is to describe technical aspects of the DRIP 
subsystem as implemented in the SWITCH public releases, building upon the design and development work 
described in earlier SWITCH deliverables, particularly Deliverable 3.2 “Design specification for the 
infrastructure planning service”. It provides an updated description of the DRIP architecture and 
technologies, and provides in-depth descriptions of some of the key research developments that have been 
implemented over the past twelve months, including: 

• Updated experimental evaluation of the DRIP planner for multi-deadline time-critical applications, 
originally specified in D3.2, now with support for the optimal configuration of software-defined 
networks—in particular determining the best placement of SDN controllers. 

o Experimental comparison of the DRIP planner algorithm (MEPA) with IC-PCP and CPI (see 
Section 3) is provided, based on the work in [Wang et al., 2017a]. 

o A description of an extension to MEPA (TCPlanner), which identifies the best placement of 
SDN controllers, is also provided. 

• A description of a dynamic service for gathering Cloud performance information, needed to unlock 
the full potential of QoS-aware infrastructure planning. 

o The process of provisioning and running infrastructure for testing Cloud resources is 
described. 

o A sample of the experiments performed is provided to better characterise the contribution of 
the service to SWITCH [Elzinga et al., 2017]. 

• An updated description of the DRIP provisioning system, focusing on multi-site provisioning that 
allows for the construction of ‘virtual clouds’ in a multi-cloud environment based on a TOSCA 
specification generated within DRIP. 

o The basic scheme for specifying a multi-site plan in TOSCA is described. 
o Data transfer across the Internet to provisioned infrastructure is experimentally analysed in 

order to better evaluate the feasibility of this kind of multi-site infrastructure [Zhou et al., 
2016a, 2016b, 2016c]. 

• An updated description of the DRIP deployment agent, describing how DRIP can optimise the 
retrieval and installation of remote application components to make best use of available network 
bandwidth in limited time windows: 

o The deployment agent is based on the Deadline-aware Deployment System (DDS) proposed 
by [Hu et al., 2017]. 

o DDS has been experimentally evaluated on private Cloud, demonstrating superior ability to 
schedule application component deployments on virtual infrastructure within a deadline over 
a number of common real-time scheduling algorithms. 

The DRIP subsystem, along with the rest of the current SWITCH technology suite, can be found online at: 
https://github.com/switch-project.  
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1 Introduction 
The SWITCH workbench consists of three subsystems, each taking primary responsibility for one of the 
three key parts of the time-critical application lifecycle on cloud infrastructure: development, provisioning 
and adaptation. The provisioning of a virtual infrastructure for a time-critical application requires careful 
planning of the host infrastructure based on a well-defined application specification. This specification must 
capture not only the application workflow, but also the constraints upon its components’ operations, the 
requirements for monitoring those operations, and the adaptability of the application—the extent by and 
conditions under which the application topology can change as the application enters different ‘modes’ of 
operation. To plan for such applications, there needs to be careful selection of resources from one or more 
cloud providers, and these resources need to operate to the levels dictated by the applications’ time-critical 
requirements. This requires an understanding of not only the core characteristics of the cloud resources (e.g. 
virtual machines) on offer, but also an understanding of the connectivity between components. Finally, in 
order to ensure adequate quality of service, time-critical applications on clouds need to be backed up by 
strong service level agreements that assert that the key characteristic properties of resources upon which 
planning is contingent are satisfied and maintained throughout the lifetime of a given application 
deployment. 

The Dynamic Real-time Infrastructure Planner (DRIP) is responsible for the planning, validation and 
provisioning of the virtual infrastructure enlisted to support an application specified using the SWITCH 
Interactive Development Environment (SIDE). The virtual infrastructure (providing compute power, storage 
and network for the application) described by DRIP should implement the architecture of the application 
efficiently and in adherence with the constraints imposed by the developer. This infrastructure should be 
designed in full knowledge of the offerings provided by available cloud services, as well as the support 
services required to execute and manage the application at runtime. Furthermore, once DRIP has formulated 
an acceptable proposed infrastructure, it should automatically negotiate with cloud providers in real-time to 
provision the infrastructure with respect to an agreed set of service-level agreements (SLAs) that will satisfy 
(in principle) all quality of service (QoS) requirements. With those agreements in place and the infrastructure 
provisioned (which may extend beyond a single cloud), DRIP will then initialise the execution of the 
application and pass control over to the Autonomous System Adaptation Platform (ASAP) that will control it 
in tandem with the application developer. 

[Laplante and Ovaska, 2011] define a real-time system as "a computer system that must satisfy bounded 
response-time constraints or risk severe consequences". The key notion is that of response time, the time 
between a system or system component receiving inputs and realising the required output behaviour. Our 
notion of ‘time-critical application’, as expressed in the original SWITCH description of work, refers 
specifically to distributed real-time applications that must satisfy one or more response-time constraints 
imposed on some subset of the application's constituent components, e.g. to respond within a certain time 
window to new sensor data (as in the case of the elastic disaster early warning pilot case provided by BEIA), 
to scale seamlessly to new users (as in the case of the unified communication platform case provided by 
WT), or to minimise the latency across the pipeline used to process video streams (as in the case of the cloud 
video studio pilot case provided by MOG). The distribution of components is of particular concern, because 
then the communication latency between components becomes just as important, if not more so, than the 
performance of the individual parts. To further compounding the challenge we face, the applications we are 
concerned with often have multiple overlapping response-time constraints on different parts of the 
application workflow. The SWITCH project must address multiple levels of deadlines on application 
execution, and it is the role of the DRIP subsystem within SWITCH to provision infrastructures that can 
guarantee sufficient performance across the entire topology of virtualised resources conscripted in a virtual 
infrastructure. Note that our concern is not with executing applications as quickly as possible, but with 
ensuring stable performance within strict boundaries in the most cost-effective manner feasible (where 
‘cost’, particularly in private Clouds, might be measured in terms of metrics other than money, such as 
energy consumption). 
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The actual nature of individual response-time constraints varies. For example, often time constraints imposed 
on the acquisition, processing and publishing of real-time observations, not least in scenarios such as weather 
prediction or disaster early warning [Poslad et al., 2015]. The ability to handle such scenarios is predicated 
on the time needed for customisation of the runtime environment and the scheduling of workflows [Zhao et 
al., 2011], while the steering of applications during complex experiments is also temporally bounded [Evans 
et al. 2015]. Time constraints are imposed on the scheduling and execution of tasks that require high 
performance or high throughput computing (HPC/HTC), on the customisation, reservation and provisioning 
of suitable infrastructure, on the monitoring of runtime application and infrastructure behaviour, and on 
runtime controls. Failure recovery for deployed services and applications in real time is also important when 
supporting time-critical applications; time constraints are not only imposed on failure detection, but also on 
decision-making and recovery. 

 
Figure 1-1 Terminologies related to time-critical applications. 

Figure 1-1 defines a simple taxonomy for classifying temporal requirements. We have speed critical 
applications, where the objective is simply to minimise the completion time; these applications most suit the 
high-performance computing paradigm. Otherwise, real-time applications are often characterised by 
bounded response time constraints on inputs, with certain consequences upon failure to meet deadlines 
[Laplante and Ovaska, 2011]. Based on the impact of a system not responding on time, a real-time 
application is referred to as hard real-time when any deadline it misses leads to an immediate failure of the 
application, soft real-time when missing deadlines only leads to degradation of perceived performance, and 
firm real-time when individual missed deadlines will not lead to immediate failure, but too many misses 
notably will. Nearly real-time (NRT) applications are those with an intrinsic yet bounded delay introduced 
by data processing or transmission. Note that this does not make all NRT applications `soft'—such 
applications can still impose a hard requirement for processing to fall within the permitted bounds. 

In the context in which SWITCH is mainly intended to operate, we expect most constraints to be soft or firm 
rather than hard. An application system where a single failure to respond within a specific time window is 
actively disastrous is probably not a good candidate for hosting in the Cloud, but a major objective of 
SWITCH is to tackle the problem of how the Cloud can be augmented with technologies such as SDN to 
raise the general quality of service that can be guaranteed by an application so as to make its use feasible for 
increasingly 'firm' applications. Thus DRIP must support a range of different kinds of deadline constraint, 
with varying levels of firmness (allowing DRIP to prioritise between softer and harder constraints). 

In this deliverable, we report on the current implementation of the DRIP subsystem of SWITCH (Section 2), 
and examine in more detail the key research and development activities conducted in the previous twelve 

Quality-critical application

Time-critical application

Speed-critical application Real-time application
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months that have led to the realisation of the DRIP architectural design, essentially expanding on the 
equivalent treatment in the earlier Deliverable 3.2. These key activities can be summarised as follows: 

• The development of a QoS and SDN aware planner for multi-deadline application workflows 
(Section 3); data-oriented workflows that capture the composition and dependencies of a time-
critical application with multiple overlapping constraints on the response time of different subsets of 
application components. The planner uses information about the performance of specific kinds of 
virtual resource and their comparative running costs in order to determine the most cost-effective 
configuration of virtual infrastructure that will meet the deadline requirements of an application. 
This planner, which builds upon the state-of-the-art in critical path planning algorithms, is a key part 
of DRIP, able to process application specifications described in accordance with the TOSCA 
(Topology and Orchestration Specification for Cloud Applications) standard for cloud applications, 
and also determine the optimal placement of controllers in SDN-enabled infrastructures. 

• The development of a dynamic Cloud performance measurement service (Section 4) that can be 
used to inform and guide the DRIP infrastructure planner by testing different VM offerings against 
different kinds of application component, and collecting that information in order to produce the 
performance matrices needed by the planner to operate at its full potential. This service can gather 
performance information from various sources, including in principle the monitoring service 
provided by ASAP. 

• The development of a fast inter-Cloud provisioning service (Section 5) that can partition virtual 
infrastructure topologies into parallel slices that can be provisioned in parallel on multiple physical 
infrastructures, potentially provided on different cloud platforms. This service acts as an 
intermediary between the application developer and one or more cloud providers, performing any 
necessary topological transformation whilst maintaining the critical logical dependencies between 
application components. Such fast provisioning may be necessary in cases where application 
adaptation (e.g. migration of virtual machines) or failure recovery cannot occur without significant 
restructuring of the infrastructure already provisioned, reducing both the time needed for such an 
operation, and the portion of the infrastructure that actually needs to be remodelled. 

• The design of a deployment service for fast retrieval and installation of application 
components from a remote repository (Section 6) that can deploy application components onto 
planned virtual infrastructures, and provide a control interface for use by the ASAP subsystem. The 
SWITCH project has chosen Docker1 as the default technology to wrap application components, 
because of its lightweight and efficient booting. We can also clearly see the use of containers as a 
trend in many different cloud projects—either provided directly on physical infrastructure or on 
virtual machines. To provide maximum compatibility with a range of cloud providers, we have 
chosen VMs as the basis for deploying Docker containers for our pilot cases. 

Being able to plan compatible infrastructure topologies for a sufficient range of multi-deadline application 
workflows, to be able to ensure the fast provisioning of both intra- and inter-cloud virtual infrastructure, and 
to be able to deploy application components quickly and efficiently represent the key contributions of DRIP 
to the overall SWITCH project. The following section describes the implementation of DRIP that is to be 
found in the final SWITCH public release, which realises all the key functionalities of the DRIP design 
published in Deliverable 3.2. 

  

                                                        
1 https://www.docker.com/ 
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2 Implementation architecture and software 
The DRIP subsystem is intended to provide machinery for realising a number of key actions during the 
lifecycle of a time-critical cloud application brokered using the SWITCH workbench: infrastructure 
planning, infrastructure provisioning and application deployment. However, DRIP also must provide a 
means to perform application control at runtime, and resource discovery throughout and outside of the main 
application lifecycle. These actions, and the core components of the DRIP subsystem that relate to them, are 
packaged together as a single decentralised system coordinated via a dedicated DRIP manager, as shown in 
Figure 2-1. On the upper level, the manager offers a RESTful API and component coordination capabilities, 
with the message broker validating and routing messages between components and the manager. On the 
lower level, the planner builds a provision plan based on specific constraints, the infrastructure provisioner 
interacts with different Cloud providers to offer the virtual infrastructure, and finally the deployment agent 
installs application components. The knowledge base stores information about Cloud services and other 
persistent data needed by DRIP and ASAP to function, assisted by the performance modeller, which helps 
DRIP build a working knowledge of current Cloud resources and their performance related to particular 
kinds of application component. 

 
Figure 2-1 DRIP implementation architecture. 

The DRIP service is made up of a number of components: 

1. The infrastructure planner uses an adapted partial critical path algorithm to produce efficient 
infrastructure topologies based on application workflows and constraints by selecting cost-effective 
virtual machines [Wang et al., 2017a], customising the network topology among VMs, and placing 
network controllers for the networked VMs [Wang et al., 2017b]. 

2. The performance modeller allows for testing of different cloud resources against different kinds of 
application component in order to provide performance data for use by the infrastructure planner and 
other components inside and outside of DRIP [Elzinga et al., 2017]. 
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3. The infrastructure provisioner can automate the provisioning of infrastructure plans produced by the 
planner onto underlying infrastructure services. The provisioner can decompose the infrastructure 
description and provision it across multiple data centres (possibly from different providers) with 
transparent network configuration [Zhou et al., 2016a]. 

4. The deployment agent installs application components onto provisioned infrastructure. The deployment 
agent is able to schedule based on network bottlenecks, and maximize the satisfaction of deployment 
deadlines [Hu et al., 2017]. 

5. The infrastructure control agents are a set of APIs that DRIP provides to applications to control the 
scaling containers or VMs and for adapting network flows. They provide access to the underlying 
programmability provided by the virtual infrastructures, e.g., horizontal and vertical scaling of virtual 
machines, by providing interfaces by which the infrastructure hosting an application can be dynamically 
manipulated at runtime. 

6. The DRIP manager is implemented as a web service that allows DRIP functions to be invoked by 
outside clients as services. Each request is directed to the appropriate component by the manager, which 
is responsible for coordinating the individual components and scaling them if necessary. The manager 
also maintains a database containing user accounts. 

7. The communication between the manager and the individual components is facilitated by a message 
broker. Message brokering is an architectural pattern for message validation, transformation and 
routing, helping compose asynchronous, loosely coupled applications by providing transparent 
communication to independent components. 

8. Resource information, credentials, and application workflows are all internally managed via a 
knowledge base. It maintains the descriptions of the cloud providers, resource types, performance 
characteristics, and other relevant information. The knowledge base also provides an interface for these 
agents to look up providers, resources and runtime status data during the execution of an application. 

The prototype of DRIP is based on industrial and community standards. The infrastructure planner is 
currently specified in YAML (formerly ‘Yet Another Markup Language’ but now ‘YAML Ain’t a Markup 
Language’) in compliance with the Topology and Orchestration Specification for Cloud Applications 
(TOSCA)2. The infrastructure provisioner uses the Open Cloud Computing Interface (OCCI)3 as its default 
provisioning interface, and currently supports the Amazon EC24, European Grid Initiative (EGI) FedCloud5 
and ExoGeni6 Clouds. The deployment agent can deploy overlay Docker clusters using Docker Swarm or 
Kubernetes7. It may also deploy any type of customised distributed application based on Ansible playbooks8. 
The infrastructure control agents are set of API that DRIP provides to applications to control the 
infrastructure for scaling containers or VMs and adapting network flows. The manager provides a RESTful 
interface. DRIP uses the Advanced Message Queuing Protocol (AMQP) and RabbitMQ as its message 
broker where each process of each component is represented by a separate queue; this scalable architecture 
allows DRIP to be extended with additional components (e.g. planners) in order to handle larger workflows 
(e.g. in the case of a single DRIP service being provided to a large organisation for several applications). All 
DRIP software is open source; the essential characterisation of all of these components is that of independent 
micro-services that are able to perform their designated functions and their own reasoning autonomously, 
allowing for different individual implementations of components to be used by different and future 
configurations of the SWITCH workbench. This the DRIP components are made available as open source 
under the Apache License Version 2.0; the software has been containerised and can be provisioned and 
deployed on federated virtual infrastructures within minimal configuration. They can be obtained either via 

                                                        
2 https://www.oasis-open.org/committees/tosca/ 
3 http://occi-wg.org/ 
4 https://aws.amazon.com/cn/ec2 
5 https://www.egi.eu/federation/egi-federated-cloud/ 
6 http://www.exogeni.net/ 
7 https://kubernetes.io/ 
8 https://www.ansible.com/  
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the SWITCH release repository at https://github.com/switch-project or directly via the DRIP development 
repository at https://github.com/QCAPI-DRIP. 

Figure 2-2 shows the basic process of using DRIP as a sequence diagram. 

 
Figure 2-2 Sequence diagram describing how DRIP plans and provisions virtual infrastructure and how it deploys software.  

The first step to obtain and manage a virtual infrastructure is to create an abstract definition of that 
infrastructure as a TOSCA description; this is a YAML structure text file describing the application 
workflow and characteristics, as provided for example by the SIDE subsystem of SWITCH (for more detail 
about TOSCA and its use by SWITCH, see Deliverable 2.4 “Concept description for application-
infrastructure co-programming”). 

proxy_transcoder: 

   type: switch.nodes.softwarecomponent.proxy_transcoder 

   capability: proxy_transcoder 

   properties: 

      publish_ports: {get_input: proxy_trans_port} 

   artifacts: 

      docker_image: 

         file: proxy_transcoder 

         type: switch.artifacts.docker 

         repo: SWTICH_MOG_Docker_Hub 

   interfaces: 

      standard: 

         create: 

            implementation: install.sh 

         configuration: 

            implementation: config.sh 

:DripManager

:MessageBroker

:Planner

:Provisioner :CloudProvider

:User :KnowledgeBase :DeploymentAgent

upload(tosca:file):string

plan(tosca_UID:string):string

save_tosca(tosca:file):string

provision(plan_UID:string):string

deploy(provision_UID:string,
config_UI:string):string

read(UID:string):file

send(message:string, queue:string):file plan(tosca:file):file

save(plan:file):string

read(UID:string):file

send(message:string, queue:string):file provision(plan_file:file):file request_resources(resource_list:list)

read(UID:string):file

send(message:string, queue:string):file deploy_software(software_description:description, vm_description:list)
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            input: 

               proxy_codec_profile: {get_intput: codec_profile}          

   requirements: 

         host: 

            node_filter: 

            capability: 

               host: 

                  properties: 

                     mem_size: 8GB 

Figure 2-3 Sample of TOSCA-compliant YAML used by DRIP for planning/provisioning. 

This description may contain network requirements such as desired bandwidth or network topology. For 
example a user may need a cluster with a private network. As soon as the user has specified the TOSCA 
description it can uploaded to DRIP via a POST request. At this point the TOSCA description is saved on the 
user’s account under a unique ID. Next, the user may request a concrete plan from DRIP. This can be 
achieved by sending a GET request to DRIP containing the TOSCA description ID. The manager will direct 
the request to the planner which will generate a plan and return the plan’s unique ID to the user. The 
generated plan will be further used by the provisioner to realise the virtual infrastructure. The provisioner 
will use the plan along with the necessary cloud credentials stored in the manager to request resources from 
one or more cloud providers. Finally, the deployment agent can use a description of the provisioned virtual 
infrastructure to deploy application components. The internal activities of the components follow the logical 
sequences already described in Deliverable 3.2. 

The main interface by which external actors (such as the SIDE client) can invoke DRIP is provided by the 
DRIP manager. The control agent, of which multiple instances might be deployed alongside an application at 
runtime, provides an API for invoking operations on an application or its host infrastructure, which is not 
shown at this level of abstraction; however it can be seen that the control agent can itself invoke the DRIP 
manager when required to perform adaptations of a live application that require the use of other DRIP 
components, for example to deploy additional application components or to re-plan an infrastructure entirely 
(though the general idea in SWITCH is to minimise such drastic actions by ensuring that the original 
infrastructure planned and provisioned for an application has sufficient flexibility to handle adaptations 
without the need for this, it is nonetheless important to have such capability when it is unavoidable). A full 
specification of the API can be found at https://github.com/QCAPI-DRIP, with the current version also 
provided as Appendix A in this document. 

In the following sections, we describe the research and innovation that has been carried out in the last year, 
focusing on each of the key components of the DRIP system and surveying their design, implementation and 
experimental evaluation. 

 

  



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 12 of 61 

3 Infrastructure planning for SWITCH applications 
Executing time-critical applications within cloud environments while satisfying execution deadlines and 
response time requirements is challenging due to the difficulty of securing guaranteed performance from the 
underlying virtual infrastructure. Cost-effective solutions for hosting such applications in the Cloud require 
careful selection of cloud resources and efficient scheduling of tasks. Existing solutions for provisioning 
infrastructures for time constrained applications are typically based on a single global deadline. Many time-
critical applications however have multiple internal time constraints when responding to new input. In this 
section we review the cloud infrastructure planning algorithm originally presented in D3.2 and further 
detailed by Wang et al. [2017a] that accounts for multiple overlapping internal deadlines on sets of tasks 
within an application workflow. In order to better compare with existing work, we adapted the IC-PCP 
algorithm of Abrishami et al. [2013] (see below) and then compared it with our own algorithm using a large 
set of workflows generated at different scales with different execution profiles and deadlines. Our results 
show that the proposed algorithm can satisfy all overlapping deadline constraints where possible given the 
resources available, and do so with consistently lower host cost in comparison with IC-PCP. Since D3.2, 
additional research and development has been carried out into accounting for and supporting software-
defined networking (SDN), with the automatic selection and deployment of SDN controllers to augment data 
transfer between VMs provisioned for a given time-critical application. Thus we will provide an updated 
summary of the core algorithm originally presented in D3.2, and then provide a more detailed examination of 
the additional support prototyped for SDN controller placement.  

The research and development results of this section have been published in international journal of Future 
Generation Computer System [Wang, 2017a] and IEEE IM [Wang, 2017b]. 

3.1 Infrastructure planning review 
Deelman et al. [2009] provide a survey of the different kinds of workflow found in the e-science domain. 
Based on this, we can classify workflows deployed on virtual infrastructure into two basic categories: 
scientific workflows and service workflows. Scientific workflows are workflows in which each task is 
executed once and the virtual resource on which the task is deployed is released upon completion of the task 
and all following communication between the task and its successors. Service workflows are those with tasks 
that can be regarded as persistent services, where the tasks persist until the whole application is completed, 
and have to continue to respond to new inputs for the entire duration of the application. Workflows in both 
categories may exhibit multiple deadlines, but our concern is with the latter kind of workflow, which are 
often used for time-critical applications in (for example) environmental monitoring. UrbanFlood 
[Krzhizhanovskaya et al. 2011] is an example of an early warning system that tries to solve the problem of 
flood control, while Kosukhin et al. [2015] presents an architecture for performing extreme metocean event 
forecasting on cloud platforms. In the case of the UrbanFlood system, the workflow has multiple stages with 
separate modules for sensor monitoring, AI anomaly detection, reliability analysis, breach simulation, virtual 
dikes, and decision support. Such a system can have multiple internal deadlines in order to ensure timely 
responses, especially if individual modules must report to other external systems; however the quality of 
service is not addressed by Krzhizhanovskaya et al. when planning the infrastructure for the application. 

Allocating and scheduling cloud resources for application workflows has become increasingly important for 
both the cloud provider and application developer, and so there are now many scheduling algorithms 
available to determine the amount and type of virtual machines needed to execute such workflows at 
minimal cost. To the best of our knowledge however, all this work addresses the problem of planning 
infrastructures for workflows that have a single global single deadline, rather than multiple internal dead- 
lines, which is our main concern within the context of SWITCH. 

There exist a number of works that focus on optimal resource assignment on virtual infrastructure under 
different conditions and assumptions. Yu et al. [2005] propose a method to minimise the execution cost of a 
workflow to satisfy a global deadline. Their method first clusters the sequential tasks that have only one 
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parent and child together and assigns each task with a sub-deadline based on its minimum processing time 
and the sub-deadlines of its predecessor. Each task is then assigned to the least expensive virtual machine 
(VM) that can meet the deadline—however, the communication cost between tasks is not considered, nor the 
presence of multiple deadlines. The Infrastructure-as-a- Service Cloud Partial Critical Paths (IC-PCP) 
algorithm [Abrishami et al., 2013] calculates partial critical paths through the application workflow in order 
to schedule the deployment of tasks on the cloud in order to solve the same problem. IC-PCP can be 
combined with the approach taken by Yu et al.; after finding a partial critical path, each task in the path is 
assigned a sub-deadline with the execution time in proportion to the whole partial critical path length. The 
tasks in the workflow are then assigned to the cheapest VMs that still meet those deadlines. Though 
originally formulated to meet a global deadline, support for additional internal deadlines in IC-PCP can be 
added by overriding the generated sub-deadlines with pre-defined deadlines where the latter are more strict.  

The planner we have developed is based on the IC-PCP algorithm, but we make a number of assumptions 
different from those made by Abrishami et al. For one, we assume that after one task transfers its results to 
all its successors, the VM where the task is deployed is not released, and instead the task will act as a 
persistent service waiting for more input—thus the deadline for a given task must be satisfied every time the 
task receives new input. We also make the assumption that every task in the workflow will be deployed on 
its own VM, both for simplicity, and because sharing VMs impacts the performance of tasks [Cai et al., 
2016], and our focus is on time-critical applications. Most importantly, we assume that workflows can have 
multiple internal deadlines on different processes based on the requirements of users or downstream services.  

Our Multi-dEadline workflow Planning Algorithm (MEPA) uses a ‘compress-relax’ method. VMs with 
best performance are assigned to tasks so that the ‘makespan’ (total execution time) is ‘compressed’ and all 
deadlines are met if possible; the assignment over the workflow is then ‘relaxed’ by re-assigning to tasks less 
powerful VMs albeit with lower cost while preserving deadline satisfaction. Initially MEPA assigns each 
task in the workflow with the best performing VM to guarantee a basic solution; if not all deadlines can be 
met this way, then an alternative infrastructure will be needed, or else the QoS requirements of the 
application will need to be relaxed. Based on the initial ‘compressed’ assignment, MEPA then calculates the 
earliest start time (EST), earliest finish time (EFT) and latest finish time (LFT) for each task based on the 
dependencies between tasks and necessary communication costs. MEPA then works backwards from the 
final tasks of the workflow to assign the internal deadlines; if the deadline on a task is stricter than the 
calculated LFT for that task, then the deadline simply replaces the LFT. If the EFT for a task exceeds its 
LFT, then the currently available resources cannot satisfy the time constraints on the workflow. Once the 
constraints on a critical path have been determined, it is then possible to determine the best assignment of 
VM type to each node on the path, as illustrated by Figure 3-1. 
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Figure 3-1 Example of deadline-aware planning by DRIP. The blue nodes represent the workflow, with the critical path 

outlined. For each parallel group of nodes, the earliest/latest start/finish times can be extracted.  

Actual assignment of different kinds of VM to different nodes in the same workflow can be based on brute-
force calculations, or based on the use of heuristics. Convolbo and Chou [2016] propose a heuristic approach 
which exploits the parallel properties of the workflow to minimise execution time. Rodriguez and Buyya 
[2014] apply particle swarm optimisation, encoding within each particle a task-resource mapping. 
Heterogeneous Earliest Finish Time (HEFT) has been proved to perform better than other heuristics in 
robustness and schedule length [Canon et al., 2008], and Multi-Objective HEFT extends HEFT to optimise 
the trade-off between monetary cost and the makespan of the workflow [Durillo and Prodan, 2014], though 
again the communication cost is not addressed. The critical path based iterative heuristic (CPI) [Cai et al., 
2013] and multiple complete critical paths heuristic (CPIS) [Cai et al., 2016] are used in other algorithms for 
solving the infrastructure planning problem within the bounds of a single deadline. Based on the calculated 
earliest finish time and latest finish time of individual tasks, CPI identifies a complete critical path through 
the application workflow from start to finish and assigns the tasks in the critical path to VM services. In 
CPIS, a graph labelling method is applied to construct complete critical paths of the kind generated by CPI. 

In our case, VM types are assigned to the constructed partial critical path using a genetic algorithm and a 
matrix of execution costs per task per VM type (which can be based on historical observation or 
extrapolation). Our Genetic Algorithm based Planning Algorithm (GAPA) runs for a set number of 
generations to find the best combination of assignments to nodes on a critical path that fulfil all deadlines. 
After assignment, the tasks in the critical path are tagged as assigned and the EST, EFT and LFT of the other 
tasks in the workflow are updated accordingly. Assignment of the remaining tasks will then continue until all 
the tasks in the workflow are assigned. A full description of the algorithms and logic involved can be found 
in [Wang et al., 2017a]. 

3.2 Infrastructure planner evaluation 
In principle, IC-PCP can be adapted to plan the kind of service-based workflows for which DRIP is 
specialised for by using the sum cost of VMs per time unit as the metric for measuring whether one 
assignment is cheaper than the other and forbidding multiple tasks from being assigned to the same VM 
instance (deemed necessary to maintain good time-critical performance for application containers). By 
changing the calculation on the latest finishing time to take into account internal deadlines, a minimally 
modified variant of IC-PCP (which we will refer to as IC-PCP*) can plan for workflows with multiple 
deadlines. What we found however was that this approach still incurs unnecessary cost—it is possible to 
drive the cost down further than such a minimal adaptation of IC-PCP permits in many cases. In this section, 
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we describe how MEPA compares experimentally against IC-PCP* using a wide range of randomly 
generated workflows meant to represent the full variety of application workflows for which DRIP might be 
used. 

Our implementation of MEPA for DRIP is based on Python 2.7.10. We use NetworkX9 (version 1.10) to 
manage the workflow and PyDOT210 (version 1.0.33) to parse the graphs generated by GGen [Cordeiro et 
al., 2010]. NetworkX is a powerful Python library for manipulating complex networks. GGen is an open 
source random graph generator integrating several different random graph generating algorithms. The 
generated random DAGs (Directed Acyclic Graphs) are represented in DOT, which is a plain text graph 
description language. DEAP (Distributed Evolutionary Algorithms in Python) [Fortin et al., 2012] is a 
framework for experimenting with evolutionary algorithms such as genetic algorithms and particle swarm 
optimisation. For our experiments we use DEAP as the underlying framework for implementing GAPA. We 
conduct our experiment on the Distributed ASCI Supercomputer 5 (DAS-5)11.  

3.2.1 Workload generation  
To investigate the behaviour of our algorithm, we use the graph generator GGen to generate random 
workflow typologies with different time constraints. Specifically, we apply ‘fan-in/fan-out’ methods to 
generate DAGs, which are widely used in random graph generation. This graph generation method takes 
three parameters: the number of vertices, the maximum in-degree of each node and the maximum out-degree 
of each node. This kind of graph generation method will generate a graph topology with all tasks’ in-degrees 
and out-degrees within the chosen upper bounds. If the in-degree and out-degree is set to be one, then the 
DAG becomes a sequential graph. In order to test how our solutions perform on different scales of graph, we 
set the number of vertices in the workflows to range from 20 to 28. The in-degree and out-degree are used to 
generate DAGs with different shapes and we set the maximum in-degree and out-degree to range from 1 to 5 
and 1 to 4 respectively. 

For each DAG we need to generate an execution profile. The execution profile includes the performance of 
tasks on different VM services as well as the communication costs between tasks, which ranges from 1 to 
200. In many time-critical applications, the performance of tasks on different services varies for each task. 
The response time of tasks may be less than or greater than the communication cost depending on the nature 
of computation being performed and the quality of the network. So in order to make the data more realistic, 
we should randomly generate response times for tasks running on different VM services that can both exceed 
and be significantly less than communication times. For each task we first generate the execution cost of the 
task on the ‘best’ VM service, randomly selecting a response time between 1 and half of the communication 
cost upper bound. The execution costs of the task on the other ‘lesser’ services are generated iteratively by 
increasing the previously generated cost by a randomised proportion. In order to simulate better different 
kinds of real world application, our performance generation method ensures that the performance of each 
task on different VM types can be substantially larger than the communication cost or much smaller, 
ensuring greater diversity in the workflows generated and removing any implicit assumption about the 
relative cost of computation versus communication.  

The time constraints attached to a workflow are also randomly generated. The number of time constraints are 
set with a proportion to the scale of the workflow. Specifically, we set the number of time constraints per 
workflow to be 0.1  ×   𝑉 , where 𝑉  is the number of tasks in the workflow. We then randomly select 
0.1  ×   𝑉  tasks from the workflow (with the exception of the last task, which is always the final task in the 

workflow), and for each task we attach a random deadline based on the critical path calculation performed 
during workflow generation, limiting each deadline’s range based on best and worst performing VM services 
so as to ensure no ‘impossible’ (or far too easy) deadlines are set. The final task will always receive a 

                                                        
9 https://networkx.github.io/ 
10 https://pypi.python.org/pypi/pydot2/1.0.33 
11 http://www.cs.vu.nl/das5/ 
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deadline, which will serve as the global deadline for the entire application. All datasets generated for the 
experiments in this paper are available online12. 

3.2.2 Comparison of path assignment with IC-PCP and GAPA  
The partial critical path can be seen as a sequential workflow, each task of which has only one predecessor 
and successor except for the entry and exit tasks. We therefore use a set of sequential workflows to test the 
performance of GAPA. We set the scale of the sequential workflow ranging from 10 to 100 and the 
proportion of deadlines is set to be 0.1. The performance matrix of the tasks in the critical path is generated 
randomly as described in Section 5. Considering the performance fluctuation, for the generated performance 
profile, we set the task performance fluctuation rate to be 10% and communication fluctuation rate to be 
15%. The multiple time constraints of the workflow are generated as described in Section 5. We set the final 
generation in GAPA to be equal to the length of the partial critical path. In GAPA, we set the mutation rate 
to be 0.05 and population size to be 300. We assume the cloud offers three different types of VM services 
and set the price for each service as 5, 2 and 1, which is the same as used in [Abrishami et al., 2013].  

In IC-PCP, the whole partial critical path is assigned with the same VM type. Thus, for each workflow, there 
are three path assigning choices, assigning all the tasks to 𝑠!, 𝑠! or 𝑠!. We compare the cost with GAPA and 
the cost with IC-PCP by assigning all the tasks to the VM service with best performance. We do this because 
other VM service selections usually violate one or more deadlines; based on our experiment involving 90 
partial critical paths of incrementally increasing length, assigning the second best type of VM leads to a valid 
solution only 4 times in 90.  

Experimental results are shown in Figure 3-2. The cost of assigning the best performing VM service to all 
tasks follows a linear incremental trend because the assigned VMs are of the same type. The result gotten 
from GAPA varies a lot because the deadline is randomly generated and the solution obtained from GAPA 
may not assign all the tasks to the same VM type at different path lengths. We can see that the assignment 
with GAPA appears to perform consistently better than when simply assigning all tasks on the VM with the 
best performance. We also find that GAPA can save up to almost two thirds of the IC-PCP cost in this 
experiment. 

 
Figure 3-2 Cost comparison of path assignment in IC-PCP and GAPA. 

3.2.3 Comparison of IC-PCP, CPI and MEPA with a single deadline  
MEPA can plan virtual infrastructures for applications with multiple deadlines, but to compare it with 
existing planning approaches that only support a single global deadline, we have conducted experiments on 
the dataset described in Section 3.2.1, applying a single deadline and comparing the results of MEPA with 
IC-PCP and CPI. Figures 3-2, 3-3 and 3-4 show the planned virtual infrastructure cost of solutions produced 
by MEPA, IC-PCP and CPI with test workflows with 16, 32 and 64 tasks respectively, in each case varying 
both in-degree and out-degree (identified along the x-axis with the in-degree above the out-degree) to 
ascertain how connectivity influences results. 
                                                        
12 https://github.com/WorkflowPlanning/workload 
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Figure 3-3 Results of 16 nodes with IC-PCP, CPI and MEPA of single deadline. 

 
Figure 3-4 Results of 32 nodes with IC-PCP, CPI and MEPA of single deadline. 

 
Figure 3-5 Results of 64 nodes with IC-PCP, CPI and MEPA of single deadline. 

From the figures we can see that MEPA generally leads to less expensive VM assignments than IC-PCP. 
MEPA can even save around 66% of cost compared with IC-PCP in some cases. Although from the results 
we can see that MEPA and CPI give solutions with similar costs, the time complexity of the CPI is 
𝑂(𝑁!𝐷!𝑀) due to the assignment of the path with dynamic programming to find the Pareto assignment [Cai 
et al., 2013], making it hard to scale when the deadline of the workflow is very large. 𝑁 represents the 
number of nodes. 𝑀 represents the number of services and 𝐷 represents the global deadline. In our solution, 
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there is no such bottleneck with the scale of the deadline. Moreover, we can see that for a workflow with the 
same number of nodes, the cost of MEPA and IC-PCP, CPI are quite close. The reason for this is that when 
the in/out degree increase, the DAG will become “wider”, making the length of the critical path become 
shorter. For a “loose” deadline, the path assignment of MEPA and IC-PCP can lead to similar solutions, 
leading to similar total cost. Moreover, it is not hard to see that when the scale of the workflow increases, the 
differentiation between MEPA and IC-PCP will become more significant.  

3.2.4 Comparison of IC-PCP* and MEPA with multiple deadlines  
In this part we take the workload described in Section 5 and feed the workload into both IC-PCP* (the 
minimal modification of IC-PCP for multiple deadline workflows described in Section 3) and MEPA. 
Figures 3-6, 3-7 and 3-8 compare the results of IC-PCP* and MEPA with workflows of size of 16, 32 and 64 
respectively with different in-degrees and out-degrees (identified along the x-axis with the in-degree above 
the out-degree in all figures). 

 
Figure 3-6 Results of 16 nodes with IC-PCP* and MEPA of multiple deadlines. 

 
Figure 3-7 Results of 32 nodes with IC-PCP* and MEPA of multiple deadlines. 
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Figure 3-8 Results of 64 nodes with IC-PCP* and MEPA of multiple deadlines. 

We can see from the results that MEPA is able to give cheaper solutions than IC-PCP*. When the scale of 
the workflow increases, the differentiation between the results of MEPA and IC-PCP* will become more 
significant. With the increase of in/out degree, the result of MEPA and IC-PCP* tend to become similar, but 
the similarity is reached for larger in/out degree ratios when the number of tasks in the workflow increases. 
This is because the length of the partial critical path will become shorter when the in/out degree increases. So 
the internal deadlines in each partial critical path can be less, making the planned results more similar. 

The infrastructure planning problem has not been widely discussed from the networking perspective 
however, so we now intend to study SDN technologies to better enable network-aware workflow planning. 

3.3 QoS-aware virtual SDN network planning review 
By decoupling the control plane from the data plane, Software-Defined Networking (SDN) technologies 
allow administrators or applications to manipulate the underlying network behaviour via open interfaces 
[Kreutz et al., 2015; Ongaro et al., 2015]. SDN-based standards, e.g. Network Service Interface (NSI) and 
Openflow, have shown great impact on dynamic provisioning and reconfiguration in lightpaths and data 
centre networks in physical infrastructures [Kreutz et al., 2015]. In cloud environments, SDN-based virtual 
switches (e.g. implemented using Open vSwitch13) can be used together with networked virtual machines 
(VMs) to allow applications to dynamically adjust network flows via open interfaces in order to maintain the 
system-level performance [Jeong and Figueiredo, 2016].  

At an abstract level, designing a topology of virtual network devices and placing suitable number of 
controllers are two key issues of designing a SDN network in a Cloud environment. When an application is 
distributed and has a high quality requirement such as on communication latency, designing a suitable SDN 
network can be difficult. Mapping application-level quality constraints onto network-level properties, e.g. 
topology, is not straightforward, in particular where the application has different requirements to be 
considered. The design of the virtual network should also take into account non-functional requirements, 
such as cost and reliability. To make the virtual network software-definable, one or more controllers are 
needed, and they can reside in the same VM with the virtual network devices or on a separate VM. 
Unnecessarily high numbers of controllers can not only make the resource cost high, but also increase the 
control complexity. Moreover, the placement of the controllers can also influence the control latency 
between controller and devices; when the application has critical time requirements, limiting such latency 
can also be crucial.  

In recent years, network topology optimisation and SDN controller placement have attracted lots of research 
attention. The problem of network topology customisation is often studied using optimisation approaches. 
Gódor et al. [2005] proposed a heuristic algorithm which combines clustering and local optimisation 
                                                        
13 http://openvswitch.org/ 
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operators to optimise the cost of hierarchical network planning. The costs of the network are aggregated 
together from level to level with the degree constraints. Rosenberg [2005] tried to design a network topology 
with the minimum number of links under the constraints of network diameter, degree and survivability, 
conducting theoretical analysis on the problem and proposing a method with a mathematical model. 
However, detailed information about the algorithm is not given. For the DRIP planner, we consider similar 
QoS requirements as Rosenberg and propose a meta-heuristic approach. Kamiyama et al. [2009] targets at 
designing a network topology which can guarantee the connectivity and total link length. As the search space 
enumerating all the possibilities of links is too large, they applied binary partitioning and introduced extra 
constraints to reduce the search space. In [Tuba, 2010] the maximum entropy method (MEM) is applied to 
solve the problem of network design with the objective to minimise the cost under the constraint of link 
capacity and latency. Fencl et al. [2011], to solve the problem of network topology design with the objective 
of fault tolerance and capacity of traffic and delays, apply a genetic algorithm. In summary, only Rosenberg 
considered the QoS of network reliability and network diameter constraints and presented theoretical 
analysis when customising network topology. However, a detailed description of the solution is not 
given. The controller placement problem was first addressed in [Heller et al., 2012]. The placement metrics 
average-case latency and worst case latency are still widely used in current studies. Pareto-based Optimal 
COntroller placement(POCO) [Lange et al., 2015; Hock et al., 2014] is a framework for Pareto optimal 
controller placement in terms of different performance metrics. The controller-to-switch and controller-to-
controller latency are considered to measure the network resilience. [Cheng et al., 2015] proposed three 
heuristic algorithms to solve the problem of QoS-guaranteed controller placement. The algorithms are more 
concerned with how to partition the network from the controller viewpoint. However, these existing works 
assume the number of controllers is assumed to be given. In the SDN network planning problem, this 
number is not known before. So we propose a solution that can determine the placement of controllers and 
the number of controllers needed.  

From the existing work, we can see most of the topology customisation work study physical networks, 
without considering the SDN aspects; and the SDN placement studies mainly focus on the pre-defined 
physical networks. In cloud environments, combing these two perspectives are clearly needed, so here we 
formulate this problem as the virtual SDN network planning problem, and propose a Topology-Controller 
planner (TCPlanner) to solve the problem [Wang et al., 2017b], which can be seen as an extension of the 
MEPA planner described previously. 

3.4 SDN network planning problem specification 
The virtual SDN network planning problem is to customise a network topology and place the controllers that 
can meet the given QoS requirements. As discussed above, the VMs provided by the cloud can act as the 
switches. Network topology customisation determines how these virtual switches are connected. We assume 
that the users specify the number of virtual network devices (routers or switches) as 𝑁 and QoS requirements 
(network diameter and reliability). The network diameter 𝑑 is the communication cost of the longest path 
between all the pairs in the graph. It can reflect the worst end-to-end latency in the network [Rosenberg, 
2005]. Therefore, we consider the network diameter specified by the user as the one of the QoS 
requirements. Due to the dynamics of cloud, the virtual links between VMs can fail or degrade occasionally 
[Hwang et al., 2016]. Therefore, the reliability in the virtual network topology customisation is another 
important issue which should be considered. In this paper we use single arc survivability to represent the 
reliability of the network. Single arc survivability means that when a single link in the network topology 
fails, the network is still connected. There are limited number of ports in network devices even though it is 
virtual instead of physical. The cloud provider may also limit the number of links that a VM is able to 
connect due to the limitations of physical infrastructures. More specifically, ∆ is the maximum number of 
links from any given VM. The network topology customisation problem is to define a network topology that 
has single-arc survival with network diameter no greater than d and node degree no larger than ∆. The 
overall objective of the network topology customisation is to design a network topology with the minimum 
number of network links within the constraints described above. 
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The controller placement problem is to determine the number of controllers and places where controllers 
should be deployed. We assume that the controllers can manage the same number of virtual switches and the 
controllers can be placed in the same place as the virtual switch. The controller-to-controller and controller-
to-switch communication are also enabled through the virtual network links in the network topology 
planning phase so that no extra links need to be re-planned. The controller-to-controller latency and 
controller-to-switch latency are two typical QoS requirements when placing controllers [Shah et al., 2013]. 
In this paper we use 𝜋!

!"#$"%&'()  and 𝜋!
!"#$"%&'()  to represent the maximum permitted controller-to-

controller latency and controller-to-switch latency. We 𝜋!
!"#$!%&'() to represent the average controller-to-

switch latency. 𝜋!
!"#$!%&'() is quite crucial to SDN because the controller needs to communicate frequently 

with the switches. Thus, in this paper we try to minimise the number of controllers and 𝜋!
!"#$!%&'() within 

the constraints of 𝜋!
!"#$"%&'() and 𝜋!

!"#$"%&'(). 

An approach called Topology-Controller planner (TCPlanner) is proposed to solve the virtual SDN network 
planning problem. The TCPlanner first customises the network topology to meet the high level requirements, 
which can be given by the network developer or applications, and then places the optimal number of 
controllers within the planned topology. TCPlanner plans a topology to connect virtual network devices 
based on network diameter and reliability. We use 𝑑′ to represent the maximum end-to-end latency tolerable 
for users. Thus, to guarantee the 𝑑′ and 𝜋!

!"#$"%&'(), we set 𝑑 = 𝑚𝑎𝑥 𝑑′,𝜋!
!"#$"%&'() . 

Such a problem can be viewed as a transformation of the Minimum-Cardinality-Bounded-Diameter (MCBD) 
Edge Addition Problem which has been proved to be NP-hard [Li et al., 1992; Abd-El-Barr, 2009]. 
Theoretically, there exists a brute-force algorithm that solves the problem by iterating through all feasible 
solutions. In Cloud, the virtual links can be planned between any pair in the virtual network. Thus, there exist 
(𝑁  ×  (𝑁   −   1))/2 links, so the scale of searching space will be 2!  ×  (!  !!) . This is possible for small-scale 
graphs, but becomes computationally prohibitive when 𝑁 is very large. A meta-heuristic approach based on 
evolutionary algorithms is adopted in TCPlanner, because evolutionary algorithms have been demonstrated 
as a feasible solution for several similar problems [Tsai and Rodriguez, 2014].  

We model the network connectivity using a communication matrix and assume the links between nodes are 
not directed; the communication matrix is thus symmetric. We encode a solution to a chromosome with 
length of (𝑁  ×  (𝑁   −   1))/2. Each element in the chromosome is 1 or 0, which indicates whether a link 
exists or not between vertices. Correspondingly we also design a decoding algorithm to decode the 
chromosome as a graph. The initial population can be seen as the ‘seed’ of the initial state which can have 
great effect on the performance of the genetic algorithm. Usually the initial population can be heuristically 
crafted or randomly generated. It is difficult to follow certain heuristics to create the initial population, so all 
the individuals in it are randomly generated. The assignment of each position has equal probability. 

Due to the complex various situations in which the constraints described above can be violated, we add a 
penalty factor for each violation and aggregate them with the number of links into the fitness function. As 
the objective is to minimise the number of links, we use the reciprocal of the sum of the link number and 
penalties as the fitness function which is calculated as: 

1 𝐿𝑖𝑛𝑘𝑁𝑢𝑚 + 𝑥!   ×  𝑝𝑒𝑛𝑎𝑙𝑡𝑦!
!

!!!
 

𝑥! = 0 𝑇ℎ𝑒  𝑖!!  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑖𝑠  𝑛𝑜𝑡  𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
  1 𝑇ℎ𝑒  𝑖!!  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  𝑖𝑠  𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

 

𝐿𝑖𝑛𝑘𝑁𝑢𝑚 represents the number of links in the planned network topology. 𝑝𝑒𝑛𝑎𝑙𝑡𝑦! represents the extent of 
the violation of the 𝑖!! constraint. The penalties above are to avoid unfeasible solutions like unconnected 
graphs or graphs that violate the specified constraints. In our scenario, there are four possible situations 
where the constraints can be violated: diameter violation, connectivity violation, degree violation and 
survivability violation. 
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We use genetic operators crossover and mutation to produce new generations of individuals and introduce 
diversity. We set the probability of crossover between two parents as a static value 𝑝! for each generation so 
that in each iteration new chromosomes will be produced by intersecting the parent’s chromosomes with a 
certain probability 𝑝! . After the off-springs are generated, 𝑝!×  𝑃𝑜𝑝𝑆𝑖𝑧𝑒  individuals are mutated by 
switching certain places in their chromosomes from 1 to 0 or 0 to 1. 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 refers to the population size. 𝑝! 
represents the probability of mutation of individuals. Then the next generation is selected with the 
individuals of the best fitness value and the population remains the same size as last generation. After 
planning the topology, TCPlanner will determine the number and placement location of the SDN controllers. 
The objective is to minimise the number of controllers and average controller-to-switch latency under the 
constraints of the capacity of controllers and maximum latency of controller-to-switch [Shah et al., 2013].  

In TCPlanner, we sort the degree of the nodes in the planned network topology in descending order and first 
choose the vertex 𝑣 with the maximum degree as the centre of the first cluster. The higher degree a vertex 
has, the more chances the average latency can be reduced when looking at all its neighbours one step further 
away. At each level neighbours of the centre node, we first choose the node with the minimum degree so that 
it minimises the interference on other clusters. Vertex 𝑣 tries to ‘absorb’ its neighbours in this way until the 
controller capacity or the maximum controller-to-switch latency is violated. Such process will continue until 
all the nodes are assigned to a cluster. In each cluster, its centre node is the place where controllers should be 
placed. The number of controllers is equal to the number of clusters. The results of this process can then be 
used by a provisioning service to actually place SDN controllers and configure the surrounding network 
topology. 

3.5 Evaluation 
To test the effectiveness of TCPlanner, we compared it with a K-Medoids based solution as the baseline 
[Park and Jun, 2009]. The K-Medoids algorithm is intended to classify a data set into several clusters based 
on the node distance. The basic process of K-Medoids is to randomly initialise K centres of clusters and add 
nodes to the clusters based on the distance between the centre node and non-clustered node. Then the 
algorithm will try to calculate some centres to reduce the inter-cluster and intra-cluster distance. The 
algorithm will converge when no better centres can be found. As the K-Medoids algorithm needs to specify 
the number of clusters before the execution of the algorithm, we use the square root of the number of nodes 
as the initial number of clusters. When a cluster in the solution given by K-Medoids algorithm exceeds the 
capacity of the controller or the maximum controller-to-switch latency is violated, we increase the number of 
clusters by 1. We conduct simulated experiments on different scales of networks to test the effectiveness of 
the proposed solution. Our solution is implemented in Python and depends on NetworkX and DEAP, just as 
for our earlier experiments in Section 3.2. We set the number of network devices N ranging from 6 to 25. 
The diameter of the network is set as 𝑁 . The maximum degree of the network devices is 𝑑 + 1. 𝑑 
represents the diameter of the network. We set the maximum generation number of the genetic algorithm to 
be 250 to ensure that a feasible solution can be found. 

From Figure 3-9 we can see that the number of links needed to guarantee the QoS increases with the number 
of network devices roughly linearly. In order to evaluate the performance of TCPlanner, we design a greedy 
algorithm which utilises all the degrees of each port. Therefore, the number of links that can meet the QoS 
requirements reaches 𝑁  ×  ∆. From the result we can see that TCPlanner outperforms the greedy solution. 
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Figure 3-9 Number of links for a network topology with certain QoS requirements. 

 We take the network topology generated from the data plane planning phase and compare the results of K-
Medoids and TCPlanner from the number of controllers and average controller-to-switch latency. The results 
are shown in Figures 3-10 and 3-11. 

 

 
Figure 3-10 Number of controllers deployed by K-Medoids and TCPlanner. 
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Figure 3-11 Average controller-to-switch latency for K-Medoids and TCPlanner. 

From the results we can see that the K-Medoids based solution needs more controllers than TCPlanner but 
can reduce the average latency. The result is reasonable because the K-Medoids based solution tries to 
cluster the graph to minimise the intra-class distance and inter-class distance. With the increase of the 
number of network devices, the number of needed controllers can be reduced dramatically. When the scale 
of the topology reaches 25, TCPlanner can deploy three fewer controllers than the K-Medoids-based 
solution. 

We only consider the latency constraints in the current prototype; other QoS attributes such as bandwidth can 
also have great impact on the performance of the network. Future work should thus include more network 
QoS constraints in the planning process. Moreover, the characteristics of application traffic patterns and the 
dynamic QoS control of SDN network can also be investigated in the planning algorithm, which indicates 
further development possibilities for the DRIP planner beyond the final SWITCH public release. 

  



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 25 of 61 

4 Dynamic cloud performance information 
Over the last decade, the usage of cloud computing has become increasingly popular. With the increasing 
amount of available instances and cloud providers it is becoming increasingly difficult for application 
developers to select the right cloud provider for their application. Most cloud providers provide static 
information (e.g. CPU cores, memory size, disk size, and disk type) of different kinds of virtual machines 
(VMs). However, when an application developer wants to deploy a mission-critical application in the cloud, 
the static information provided by the cloud provider is often insufficient, because static information does 
not take into account the hardware and software that is being used or the policy that has been applied by the 
cloud provider. Therefore, more precise information about cloud resource types and provisioning constraints 
is crucial to successfully deploy an application within the cloud [Zhao et al., 2015; Zhao et al., 2016]. Over 
the last few years many automated benchmark tools are proposed in literature, all of which aim to help a 
single user to benchmark multiple instances and/or providers, so that the user is able to select the right 
instance according to their requirements. However, the performance of those instances may be different each 
time it is measured [Iosup et al., 2011; Leitner and Cito, 2016]. Thus, it would be helpful if users can obtain 
statistical information about the consistency and stability of cloud resources. For the DRIP performance 
modeller component, we need to look at how to test the performance consistency and stability of provisioned 
cloud resources. The systematic collection and sharing of such information will allow the DRIP planner to 
select the most suitable resources for mission-critical applications.  

The research and development results of this section has been published in the IEEE Networking, 
Architecture and Storage (NAS) [Elzinga et al., 2017].  

4.1 State of the art 
Based on the challenges presented, we identify custom benchmarking as an important functional requirement 
in SWITCH. Implementing new and custom benchmarks is an important feature for a cloud performance 
evaluation tool. By using a well-defined way of specifying which application needs to be installed, 
configured and executed, it should be easy to implement any type of application to benchmark it on different 
cloud resources/providers. The requirements for selecting an automatic benchmark tool for DRIP are: 

1. Public availability: most importantly, the application must be publicly available for usage.  
2. Open-source: in order to make the community contribute to the tool as well, the application must be 

open-source. When applications are open-source and downloadable via for example GitHub, it helps to 
get the community involved with the project. 

3. Maintainability: an important aspect of the application is that it must be maintained frequently. The 
cloud evolves rapidly and new features are presented regularly and therefore it is important that the 
automated benchmark tools follow the new trends of the Cloud and keep helping customers to select the 
right cloud resources. 

4. Support for IaaS providers: in many cases users will compare multiple providers to select the best 
offer according to their wishes. Therefore, the application must support a large amount of public and 
private IaaS providers.  

Over the last few years there are several automated cloud benchmarking tools proposed in literature. Chhetri 
et al. [2013] proposed Smart CloudBench, which is a platform that automates the performance benchmarking 
of cloud infrastructure, helping potential consumers quickly identify the cloud providers that can deliver the 
most appropriate price/performance levels to meet their specific requirements. They looked at benchmarking 
from the consumer’s perspective and focused on benchmarking the entire application stack instead of 
looking at individual components. Cunha et al. [2017] proposed an automatic benchmark tool called the 
Cloud Crawler. The tool helps users to describe and automatically execute application performance test 
inside the cloud. New benchmarks are defined in a declarative domain-specific language called Crawl, which 
is based on YAML. Scheuner et al. [2014] presented Cloud WorkBench (CWB). CWB is designed and 
implemented to leverage the notion of Infrastructure as Code (IaC) for cloud benchmarking, and is used to 
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automate the benchmarking lifecycle from the definition to the execution of benchmarks. CWB uses 
Vagrant14 to provision virtual resources and Opscode Chef15 to install and configure the benchmark tools. 
CWB can run benchmarks directly or schedule benchmarks within various public Infrastructure as a Service 
(IaaS) clouds. Silva et al. [2013] presented CloudBench. CloudBench is an open-source framework that 
automates IaaS clouds to run controlled experiments, where complex applications are automatically 
deployed. The authors demonstrated CloudBench main characteristic through the evaluation of an 
OpenStack installation, including experiments with approximately 1200 simultaneous VMs at an arrival rate 
of up to 400 VMs/hour. 

Table 4-1 compares the most important requirements of the tools proposed in literature described in the last 
section. None of the tools proposed in literature met our requirements, therefore, we decided to create our 
own tool for use in DRIP. We identify a number of technical gaps that we try to bridge in this research:  

1. Ability to add providers: none of the tools have the ability to easily add providers to the tool. For 
example, the Cloud WorkBench uses Vagrant, which works well for the platforms Vagrant supports. 
However, when a provider is not supported by Vagrant one has to find an other way to add that provider. 
It would be helpful if a new provider could be implemented regardless of the type of software used to do 
so. Therefore, a well defined framework will be of great use to define a standard way of writing such a 
piece of code that controls the orchestration VMs. 

2. Possibility to add custom benchmarks: most of the tools proposed in literature do not provide a way to 
add custom benchmarks in an easy way. Therefore, it’s important that the installation, configuration and 
the benchmarking process are defined in a powerful way and in a common language (e.g. JSON, YAML) 
so that it’s easy for users to benchmark their scenario. 

Table 4-1 Comparison of proposed automated benchmark tools and our requirements. 

 

4.2 Cloud performance collector  
The basic steps involved in the establishment of a testing framework for cloud resources are shown by the 
sequence diagram in Figure 4-1. In the first step, the experimenter (user) runs or schedules one or more 
benchmark scenarios. When a scenario is executed, the CPC will first provision the necessary resource via 
the cloud Application Programming Interface (API). As soon as the VM instance is reachable, the software 
can be installed and configured depending on the layout of the scenario. After the successful 
installation/configuration of the software, the benchmarks can be executed. When a benchmark is finished, 
the results will be collected by the CPC. After all benchmarks are finished and all the results are collected, 
the CPC will release the VM to keep the time the VM is used to a minimum. To make it easy for developers 
to implement new features, the design includes three modules: the provider module, the ‘deploy and run’ 
module, and the result module. The provider module makes it possible to provision and release VMs when 
the experiments are finished. The ‘deploy and run’ module takes care of installing, configuring, and 
executing the benchmarks. The results module parses all the useful information out of the output of each 
benchmark application.  

                                                        
14 http//www.vagrantup.com/ 
15 http://www.getchef.com/ 
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Figure 4-1 The CPC benchmark execution process. 

To demonstrate the benefit of the design, we build a prototype to do experiments with. The prototype is a 
command-line interface (CLI) tool written in bash. During the experiments ExoGENI will be used as 
provider, therefore the provider module will make use of the python script omni16 to communicate with the 
API of ExoGENI. The deploy and run module which takes care of installing, configuring and executing the 
benchmarks will be done via Ansible17. The scheduling of benchmarks is done via Linux cronjobs. The 
results module consists out of small bash scripts to filter the output.  

4.3 Performance data collection experiments 
In order to illustrate the benefits of the CPC we conduct several experiments using the ExoGENI test-bed. 
ExoGENI 18  is a distributed networked infrastructure-as-a-service (NIaaS) platform geared towards 
experimentation and computational tasks. During these experiments we aim to answer these questions:  

1. Performance consistency: will VM instances with the same specifications perform consistently 
each time they are provisioned? 

2. Performance stability: will the same VM instance with the same workload maintain the same 
performance levels over time? 

The goal of the first question is, to measure if there is a difference between different provisioned VMs, using 
the same specifications and image from the same provider. The goal of the second question is, to find out 
whether a VM instance once provisioned performs the same over a longer period of time. By comparing the 
results of the first question with the results of the second question, we can analyse whether the performance 
variation is depending on the time of the day or the physical location of the VM instance or both. Moreover, 
we measure the performance of a real-world application, so we can demonstrate how the CPC can test any 
given application component. During each experiment, we will run the tool 24 times, scheduled each hour. 

                                                        
16 http://trac.gpolab.bbn.com/gcf/wiki/Omni 
17 https://www.ansible.com/  
18 http://www.exogeni.net/ 
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4.3.1 Experimental setup  
All experiments were conducted on the ExoGENI test-bed using the racks of: The National ICT Australia 
(NICTA), Raytheon BBN Technologies (BBN), and the University of Amsterdam (UvA). The experiments 
were conducted on the "current types" offered by ExoGENI19. During the experiments, we used three 
different instance types: XOMedium, XOLarge, and XOXLarge. Table 4-2 shows the specification of the 
current resource types offered by ExoGENI. All instances are using the same Ubuntu 14.04 image.  

Table 4-2 Resource types offered by ExoGENI. 

 
During the experiments four applications were used, three benchmark tools, and a real-world application. 
sysbench20 is a modular, cross-platform and multi-threaded benchmark tool to quickly get an impression 
about system performance. During our experiments, we use sysbench to benchmark the CPU by verifying 
prime numbers of 100,000 natural numbers. sysbench measures the time it takes to calculate those number in 
seconds. The STREAM21 benchmark is used to measure the performance of the main memory. STREAM is a 
benchmark which is designed to measure sustainable memory bandwidth using four vector-based operations: 
COPY (𝑎 = 𝑏 ), SCALE (𝑎 = 𝑞  ×  𝑏 ), SUM (𝑎 = 𝑏 + 𝑐 ), and TRIAD (𝑎 = 𝑏 + 𝑞  ×  𝑐 ). During our 
experiments we chose to use the TRIAD operation since it is the most complex operation with STREAM 
measuring the throughput in MB/s. IOzone22 is a benchmark used to measure the read and write performance 
of the disk. To reduce the time it takes to complete both the read and write process, we make use of a file 
size of 2GB with a record size of 64Kb. IOzone measures the throughput in MB/s. To demonstrate that any 
type of application could be tested, we will use the application Montage23 inside a Docker container. 
Montage is a toolkit for assembling Flexible Image Transport System (FITS) images into custom mosaics 
used in a variety of research contexts, notable for its flexibility and parallelisability in Grid and Cloud 
contexts. We will measure the time it takes for the application to create the image in seconds.  

4.3.2 Experiment 1: Performance Consistency  
In this experiment, we investigated if VM instances with the same specifications from the same provider 
performs similarly. During this experiment we used a different VM instance every two measurements. By 
benchmarking the same instance twice before a new one is used, we can see if the variation is caused by the 
fact that the instance is placed on a different physical server or by a lack of performance isolation on a single 
physical server (noisy neighbours). Figure 4-2 shows the results of running the sysbench CPU benchmark. 

                                                        
19 https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start  
20 https://github.com/akopytov/sysbench  
21 http://www.cs.virginia.edu/stream/stream2 
22 http://www.iozone.org/ 
23 http://montage.ipac.caltech.edu/  
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Figure 4-2 Variation in performance of different VM instances running sysbench. 

The instances running on the rack of NICTA perform quite stably and have little to no performance variation 
when a different instances is used. In contrast to the instances running on the rack of NICTA, we observed 
large performance variations when a new instance is provisioned on the rack of BBN. However, when we 
run the same benchmark for the second time on the same VM instance, we see a similar level of 
performance. It is likely that the instance is placed on a different physical server within the rack. After ten 
measurements it was not possible to provision the BBN XL instances again. Therefore, during this 
experiment the data available of the BBN XL instance is limited. Similar problems occurred on provisioning 
instances on the rack of the UvA. Therefore, we decided to not include the instance of the UvA during this 
experiment. Figure 4-3 shows the memory throughput measured by STREAM. 

 
Figure 4-3 Variation in performance of different VM instances running STREAM. 

In general, the results of the RAM benchmark shows the same behaviour compared to the results of the CPU 
benchmark. The Large and XL instance of NICTA show slightly decrease in performance in some 
measurements. The instance on BBN shows the similar pattern compared to the CPU benchmark. Interesting 
is that during a measurement during which the memory throughput is higher, the time it takes for sysbench to 
finish is longer. For example, the first four measurements on both the NICTA Medium and the BBN 
Medium instance show more or less the same result. During the fifth measurement of the BBN Medium 
instance, we see an increase in execution time during the CPU benchmark but also an increase in memory 
throughput. The performance disk I/O has the tendency to vary more compared to CPU and memory, during 
this experiment we can see this behaviour on the instances of NICTA as well. However, we did not see this 



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 30 of 61 

behaviour on the instances of BBN were the CPU and memory in some cases vary more compared to the 
disk I/O. Figure 4-4 shows the read performance of the different instances, all instances perform similar, 
whereas the instances of BBN perform slightly higher. 

 
  Figure 4-4 Variation in performance of different VM instances running IOzone (to read). 

The write performance is shown in Figure 4-5. 

 
  Figure 4-5: Variation in performance of different VM instances running IOzone (to write). 

Compared to the read performance, the larger instance tends to perform a little bit better compared to the 
smaller instances. Interesting is that the BBN Medium instance shows a big variation in performance.  

4.3.3 Experiment 2: Performance Stability  
During the second experiment, we investigated if the same VM instance with the same workload provide a 
stable level of performance over time. For this experiment we provisioned a VM instance for each 
provider/resource type and we will use that same VM instance for all measurements. Figure 4-6 shows the 
results of running the sysbench CPU benchmark. 
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  Figure 4-6 Variation in performance on the same VM instance running sysbench. 

All the measured instances show almost no variance in performance. The Large instance of all three racks 
perform on the same level. However, the Medium and XL instance of BBN performed less compared to the 
same instance of the other racks. Figure 4-7 the variety in performance of STREAM. 

 
Figure 4-7 Variation in performance on the same VM instance running STREAM. 

Whereas, the results CPU shows almost no variation in performance, the results of the memory show some 
small differences. The BBN Large instance shows significant difference and the NICTA Large and NICTA 
XL show some difference as well. The results of the disk I/O are similar to the first experiment. Still there is 
a lot of performance variation measured on all instances. However, the performance variation on some 
instances seem to be less compared to the first experiment. Figure 4-8 shows the read performance of the 
different instances. 
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Figure 4-8 Variation in performance on the same VM instance running IOzone (to read). 

In almost all cases (except for UvA Large) the instance running on the UvA have the highest performance 
followed by BBN. A possible explanation for the results of the UvA Large instance is the fact that the UvA 
rack is heavily used (which resulted in provisioning problems during the first experiment). Figure 4-9 shows 
the write performance of the different instances. 

 
Figure 4-9 Variation in performance on the same VM instance running IOzone (to write). 

In general, the larger instance tends to perform a little bit better compared to the smaller ones. Just like the 
first experiment, the write throughput of the BBN Medium is much higher compared to the write throughput 
of the other instances. However, this time the variation is much lower than during the first experiment. 

4.3.4 Experiment 3: Performance variation of a real-world application  
Figure 4-10 shows results for the Montage application running inside a Docker container. 
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Figure 4-10 Results of running Montage inside a Docker container. 

During this experiment, we used the same VM instance that is used during the second experiments. Similar 
to the results of the other experiments, during this experiment we can see that all instances show little 
performance variation over time. Interesting is that all medium instances are performing similar or better 
compared to their same provider counterpart.  

4.4 Discussion  
During our experiments, we have looked at performance consistency and have seen that when a new VM 
instance is provisioned the performance can be similar but in some cases can differ. When we looked at 
performance stability, we have seen that with regards to CPU and memory the performance provided by all 
tested providers is constant over time. With regards to the variation of disk performance we have seen that 
there is much more variation during both experiments. We have seen that the read performance of the UvA 
Large instance was significantly lower compared to all instances, a possible explanation being the fact that 
the UvA rack is heavily used. However, to really understand why the performance was significantly lower 
more testing is needed to identify if it has something to do with the VM type or the physical server the VM is 
hosted on. During our experiments, we also looked at the performance variation of a real-world application. 
The Montage application read a large amount of images from disk and created one big image out of those 
images. Therefore, read performance is an important aspect of the application. When we compare the results 
of this experiment with the result of disk read performance of the second experiments, we can see that 
Figures 4-8 and 4-10 have a lot of similarities. Both figures show that the UvA is the faster except for the 
UvA Large instance. Both figures show that the Large instance of each rack is performing less compared the 
Medium and XL instance of that rack. Hence, we can conclude that it should be possible to use synthetic 
benchmarks to show which instance is best for a specific application. However, it is important to understand 
the most important components of the application to compare its results to various results of synthetic 
benchmarks. 

These results demonstrate the feasibility of collecting some basic performance information for use in systems 
such as DRIP, though it should be noted that the kind of characteristics that can be accurately gathered are 
limited by the type of application component for which the best VM is to be selected (dependence on 
processing, on disk or network I/O, general variability of performance, etc.). Nevertheless, such a 
performance modelling tool can be used to gather data for the DRIP knowledge base, which can then be 
accessed by the planner, provisioner and in principle any other component that may benefit from the 
information therein. 

  



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 34 of 61 

5 Inter-locale virtual cloud provisioning 
In DRIP we have designed and implement a flexible inter-locale Cloud engine for quality critical 
applications to help satisfy time-critical requirements for highly distributed big data processing. This cloud 
engine is able to provision a networked infrastructure, recover from sudden failures quickly, and scale across 
data centres or Clouds automatically. The key technologies used include transparent network connection and 
standardised multi-level infrastructure description. This work was originally presented in D3.2, but 
additional details about how the TOSCA-based plans generated by DRIP are handled are provided here, as 
well as a report on further experiments conducted.  

The research and development results of this section have been published in IEEE International Symposium 
on Real time distributed computing (ISORC) [Zhou et al., 2016a], IEEE Cloud [Zhou et al., 2016b], and 
workshop IT4RIs in IEEE RTSS [Zhou et al., 2016c] 

5.1 Challenges and gaps 
According to the current state of the Cloud in industry, we infer the following challenges and gaps when 
migrating this kind of quality critical application onto Cloud, focusing mainly on infrastructure provisioning:  

1. Networked infrastructure. The applications workflow becomes more complex with a lot of 
components that need to communicate with each other. Separated instances cannot complete the whole 
job. For instance, the components in different parts of a big data infrastructure need to communicate with 
each other and transfer data. The virtual infrastructure must therefore realise a particular network 
topology. Most current cloud providers cannot support this however; for example, Amazon EC2 can 
only allow users to describe private subnets, making it hard to build a complete topology.  

2. Nearly real-time constraints. Nearly real-time applications require that most task deadlines be met over 
the lifetime of the application. Missing one deadline does not lead to immediate failure of the 
application, but continued failure to meet deadlines is unacceptable. We identify two particular types of 
nearly real-time constraints in this section. The first type is of static constraints on network transmission 
time as data is processed, which restrict task scheduling before provisioning. The second type is of 
runtime constraints restricting the time the application has to recover from sudden failures—because the 
application is running all the time and some failures cannot be avoided, especially where the Cloud is 
remote and not totally reliable. Currently developers generally put all components in one data centre. If 
that data centre is not accessible, then we have to re-provision the whole infrastructure within another 
data centre, which is a costly operation.  

3. Geography. Not all the components of an application are on the cloud. Data collectors such as (for 
example) cameras providing video of a live event are not on the Cloud themselves, but provide data to be 
ingested into the Cloud. The geographic location of any virtual infrastructure therefore has to be 
considered to satisfy the nearly real-time constraints on data delivery [Alamri et al., 2013].  

4. Auto provisioning and federated cloud. Since these applications are complex, we need a way to 
provision the whole infrastructure and deploy applications automatically. Currently, some tools can only 
provision automatically at instance level, for example Chef24. On the other hand, we may need more 
resources from other Clouds to provision a large scale infrastructure [Zhang et al., 2016]. It is a problem 
to combine these resources across multiple locales however. 

5.2 Methodology and use 
To address the challenges of SWITCH, we designed and developed a Cloud engine to set up the virtual 
Cloud. This virtual Cloud is an encapsulation of different data centres or other Clouds. With the help of this 
Cloud engine, the Cloud user can provision networked virtual infrastructure and manage all virtual resources 
together on the one virtual Cloud. This engine relies on transparent network connection methods and 

                                                        
24 https://www.chef.io/chef/ 
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standardised multi-level infrastructure descriptions. The engine applies two different methods to settle the 
problem of connectivity between partitioned topologies in different locales, which is a key step for 
provisioning across multiple data centres or Clouds. These two connection methods have also been discussed 
in detail in D3.2 and [Zhou et al., 2016]. 

Figure 5-1 illustrates the first connection method. It shows how one packet gets through the public network 
between two sub-topologies. It is mainly based on NAT. The proxy node works as a mirror of the node in 
another topology and is not made visible to the Cloud user. At the same time, VM1 and VM2 can 
communicate via private IP addresses, which are selected by the application developer. 

 
Figure 5-1 Connection technique with proxy nodes. 

The second method to connect these sub-topologies is using IP tunnelling. This method is shown in Figure 5-
2. With the IP tunnelling technique, the original packet, which uses the internal private network addresses 
provided by the application developer, can be wrapped in another packet which allows the original packet to 
be delivered through the public network.  

 
Figure 5-2 Connection method with IP tunnelling. 

The advantage of the second method is that it does not add the extra overhead of proxy nodes for every link 
that crosses sub-topologies, in contrast with the first method. However, only some versions of Linux support 
IP tunnelling by default. If the customer adopts (for example) Windows for the virtual machines to run on, 
then the second method cannot be easily made to work. Another disadvantage of the second method is that 
we need to re-configure the original nodes provided by the developer. It is therefore not totally transparent 
when compared with the proxy node method. We therefore adopt both methods and choose which one to 
apply depending on the specific situation. Meanwhile, we have tested to confirm that the network 
performance will not significantly drop with use of either of these methods.  

Another key part of our solution lies with infrastructure description. The infrastructure specification used by 
our engine adopts the TOSCA standard, expressed in YAML. The multi-level description is used to 
provision infrastructure provided by different data centres or even different Clouds. Figure 5-3 shows an 
example of the files used. 
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Figure 5-3 Example of an infrastructure description (zh_all.yml on the left, ec2_zh_a.yml on the right). 

In Figure 5-3 the file zh_all.yml provides a top-level infrastructure description. It specifies different sub-
topologies and their providers. The field ‘topologies’ defines the whole topology. The subfield ‘topology’ of 
this field defines the name of the sub-topology. It is also the name of the low-level description file, which 
describes the infrastructure in more detail. The user should also define which cloud provider this sub-
topology belongs to. The field ‘connections’ describes how the sub-topologies are connected. Besides these, 
the fields ‘publicKeyPath’ and ‘userName’ are important to set up the virtual Cloud. The user generates a 
RSA key pair. He keeps the private key and publishes the public key within the field ‘publicKeyPath’. After 
the virtual resources are provisioned, the user can then login to every instance with the corresponding private 
key and the user name defined in the configuration file. Otherwise, the user would need different private 
keys to access resources from different cloud providers. The default user-name would also be different.  

File ec2_zh_a.yml is an example of the low-level infrastructure description. The infrastructure resources 
described in one file are all in one data centre. The field ‘components’ describes the computing resources of 
VM nodes. The fields ‘subnets’ and ‘connections’ describe the network resources. Among them, the field 
“subnets” is used to describe several nodes in one subnet. The field ‘connections’ defines a specific link 
between two nodes. This field makes it easy to describe the network topology. It is worth mentioning that the 
user can specify the installation file and installation script path in each node description. With these fields, 
the applications developed by developers can be automatically deployed after provisioning.  
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These files are human readable and standardised, and are generated by the DRIP planner. The provisioning 
engine can then be used in a number of scenarios to satisfy the static and runtime requirements of big data 
applications: 

1. Provisioning networked infrastructure. While the user can describe network topologies using 
networked infrastructure providers such as ExoGENI, the user cannot get network topology on other 
providers such as EC2 or EGI FedCloud25, as shown in Figure 5-4. EC2 and EGI FedCloud represent the 
current state of most cloud providers whether private or public. With our Cloud engine, the user can 
describe his own network topology even on these Clouds by defining the field ‘connections’ in 
infrastructure descriptions. In addition, it is transparent to the provider, which means that the cloud 
provider does not need to do anything to support this feature. Thus our Cloud engine is able to set up a 
networked virtual Cloud across even public Clouds which do not explicitly support network topology 
configuration.  

 
Figure 5-4 Provisioning networked infrastructure. 

2. Fast failure recovery. Figure 5-5 describes the process of failure recovery with our Cloud engine. There 
are two key components of the Cloud engine that are relevant to this scenario: the provisioning agent and 
the monitoring agent. When some data centre is down or inaccessible, a probe previously installed on the 
node can detect this. The monitoring agent can then invoke the provisioning agent to perform recovery. 
The provisioning agent then just needs to provision the specific part of the application hosted on the 
failed infrastructure. As the infrastructure description is already partitioned, it is easy for the agent to 
provision the same topology in another data centre. Meanwhile, the connection method will keep the 
topology identical to the previous one. From the application point of view, the topology is the same and 
the application does not need to be changed. Avoiding the re-provisioning of the whole infrastructure 
can save a lot of time and make the overall infrastructure more reliable.  

 
Figure 5-5 Fast failure recovery. 

                                                        
25 https://www.egi.eu/services/cloud-compute/ 
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3. Auto scaling among data centres or Clouds. Currently, the user can only define an auto-scaling group 
in one data centre as in the example of Amazon EC2. Moreover, most cloud providers do not even afford 
this function. With our Cloud engine, the user just needs to define an address pool for auto-scaling. 
Figure 5-6 shows the process. The scaling part can then be provisioned from another data centre or 
Cloud at runtime. More importantly, the address pool can be defined in the range of private IP addresses. 
The application can then be configured to know where the scaling part is before execution. Otherwise, 
the application needs to be configured manually at runtime. This is also useful for large-scale 
applications; when the resources are exhausted or limited in one data centre or Cloud currently in use, 
the Cloud engine can make the infrastructure scale-out to use resources from other locations. 

 
Figure 5-6 Auto-scaling among data centres or Clouds.  

5.3 Evaluating new developments 
We set up experiments to test the feasibility of the solution provided by the DRIP provisioner, 
supplementing the network experiments of [Zhou et al., 2016]. Specifically, the feasibility of transferring 
data between different provisioned sites (i.e. data centres) and data sources (e.g. sensors deployed in the 
field) under different conditions. In order to simulate a realistic scenario, we create four objects in the 
experiment. The detailed properties of these objects are listed in Table 5-1. 

Table 5-1 Properties of objects in the experiment. 

 
We use a laptop to act in the role of data collector and put it in different network environments. For object 1, 
the laptop is connected to its home network via WIFI. This object is designed to simulate the situation where 
the data collector is far from the regional data centre and does not have a particularly good network 
connection. Object 2 is deployed within the campus network of UvA (University of Amsterdam) to simulate 
the situation where the data collector is close to the regional data centre and does have a very good network 
connection. Objects 3 and 4 are two VM nodes provisioned by our Cloud engine within different locales 
provided by the ExoGENI infrastructure platform. They are connected via private IP addresses far from each 
other geographically. We adopt the second connection method described in Section 2 (IP tunnelling). There 
are two main scenarios we need to compare. The first is the deployment of all the components in one data 
centre without use of our engine. The second is the adoption of our solution, which is to distribute the 
components on the virtual Cloud set up by our engine.  
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We design the first experiment to test the latency in these two scenarios. The results are shown in Figure 5-7. 
We start sixty ping requests one by one between different objects of Table 5-1. From the legend in the figure, 
we can tell which link between two objects each plot belongs to. In addition, “S1” preceding the legend 
indicates that it refers to the first scenario (without engine) described above and “S2” for the second scenario 
(with engine). It is clear that the latency is lower when the data collector is closer to the server. In the first 
scenario, despite the fact that the data collector has good network connectivity, the average latencies are 
nearly ten times higher than those in the second scenario. Moreover, the latencies in scenario 1 are not stable, 
especially when network access is bad, which is common for real data collectors. 

 
Figure 5-7 Latency comparison. 

The second experiment tests the bandwidth in both scenarios. Figure 5-8 shows the results. We measure the 
bandwidth continuously over 200 seconds. The corresponding y-axis of all blue lines in this figure is on the 
left, measured in Mbps. The corresponding y-axis of the green line is on the right, measured in Kbps. Figure 
5-8 shows that the quality of the cloud-based network is better. The link between the two VMs (objects 3 and 
4) provisioned by our Cloud engine use a cloud-based network which exhibits superior bandwidth. If we 
deploy the application without our solution, data collectors are needed to directly connect to the remote 
server. Two lines in Figure 5-8 with “S1” denote the performance. Although object 2 is in a good network 
environment, the average bandwidth is 26 Mbps less when it is directly connected to the remote server. 
Moreover, it is obvious that the bandwidth of the cloud-based network is more stable. In addition, the green 
line shows that when data collectors do not have good network access, the bandwidth is much worse. 

 
Figure 5-8 Bandwidth comparison. 
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The transmission time for data collectors can therefore be reduced using our solution. Our engine can set up 
a virtual Cloud that considers the underlying network in order to better satisfy the nearly real-time 
requirements of the application to the extent that it is possible. This kind of consideration is essential for data 
collectors to work more efficiently as part of a larger distributed system. 

5.4 Summary  
There are several innovations demonstrated by the DRIP provisioner. These innovations can help satisfy the 
requirements of time-critical applications generated using SWITCH. 

1. Fast and flexible. Multiple smaller infrastructures can be provisioned with less overhead. If some part of 
the infrastructure crashes, we just need to re-provision the smaller sub-infrastructure containing the 
failed component, not the whole aggregate infrastructure. This property can minimise violations of the 
real-time constraints of some quality-critical applications. Flexibility in where parts of the application 
are provisioned can also help satisfy any geographic requirements of the application.  

2. Flexible scaling. As cloud providers often have limitations on the scale of infrastructure provisioned for 
a particular application, our mechanism puts forward a way to provision large-scale infrastructure across 
multiple domains. The infrastructure can then even scale across cloud providers.  

3. Transparency. Our mechanism is not only transparent to cloud providers but also to application 
developers. From the providers’ point of view, there is nothing required of them to support this kind of 
provisioning. From the point of view of developers, the infrastructure is provisioned as designed, 
including selected IP addresses, the precise locations of components hidden in the network 
configuration. It is also transparent to use with tools like Apache Hadoop26 or Spark27, as long as they are 
configured with the proper private IP addresses.  

4. Standardised infrastructure level auto-provisioning. The Cloud engine only takes as input description 
files like those described in Section 5.2 The files are human readable and can be written compatible with 
the emerging TOSCA standard. Hence, they are easy to standardise. Compared with other automatic 
provisioning tools, it not only provisions the separate instances but also the network as defined by the 
user. Moreover, the application can be installed and run automatically after the infrastructure is 
provisioned.  

With this provisioning engine, application developers can design and deploy their applications on an inter-
locale virtual Cloud. The results of the simple experiments we have so far conducted demonstrate the 
feasibility and potential efficiency of our solution, though still many challenges must be tackled in order to 
truly support multi-cloud environments. 

  

                                                        
26 http://hadoop.apache.org/ 
27 https://spark.apache.org/ 



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 41 of 61 

6 Deadline-aware deployment for SWITCH applications 
For DRIP, we propose a Deadline-aware Deployment System (DDS) for time-critical applications in clouds 
which accounts for deadlines on the actual deployment time of application components. DDS enables users 
to automatically deploy time-critical applications and provide scheduling mechanisms to guarantee 
deployment deadlines. First, DDS helps users to create a local repository for application components instead 
of using a remote repository, providing a guarantee of bandwidth for transmitting application packages 
where the transmission rate directly from the remote repository is widely varying. To be deadline-aware, 
DDS schedules deployment requests based on Earliest Deadline First (EDF) [Liu and Layland, 1973] which 
is a classical scheduling technique to minimise the number of deployments that miss deadlines. Furthermore, 
we design bandwidth-aware EDF to facilitate DDS to satisfy a greater number of deadline requirements and 
achieve sufficient utilisation of bandwidth. In the evaluation, we demonstrate that DDS significantly reduces 
the number of deployments that miss deadlines, and leverages bandwidth sufficiently.  

The research and development results of this section have been published in International Conference Euro-
Par [Hu et al., 2017] 

We summarise our contributions as follows: 

• We designed and implemented DDS, a deadline-aware deployment system which can support automatic 
deployments of time-critical applications in clouds. 

• We built on DDS to implement deployment scheduling algorithms that minimise the number of 
deployments that miss deadlines and maximize the utilisation of bandwidth. 

• We experimentally evaluated the benefits of DDS on the ExoGENI test-bed and large-scale simulations 
by comparing it with three different scheduling techniques. 

6.1 Problem specification 
A typical scenario for deploying distributed applications in Clouds involves two basic steps: transmitting 
necessary application packages or software components from remote repositories to virtual machines (VMs) 
in the provisioned infrastructure; and installing the software once runnable. Containers, e.g. built using 
Docker [Merkel, 2014], are the default way to wrap application components in SWITCH. 

For a distributed application, the deployment service has to know the location of application components, 
and the location to deploy (VMs) for each component. Those container images are often stored in a 
repository, e.g. Docker hub, that is not a part of the provisioned virtual infrastructure. The deployment 
service should schedule the sequence of each component based on the application description for 
transmitting and installing each individual component. The time for deploying a single container (𝑇!) 
typically contains time cost for transmitting the component from its repository 𝑇!) and installing (extracting 
files from the Docker image) the component 𝑇!). The total time of the deployment of the whole application 
starts from the first component transmission until the last component finishes its installation. When an 
application contains more components, careless scheduling of the deployment sequence might lead to a high 
time cost, which can eventually influence the execution of the application if key application components are 
delayed during deployment. 

𝑇! depends on the size of the container and the network bandwidth between repository and target. 𝑇! mainly 
depends on the performance of the VM and the complexity of the container itself. In many cases, 𝑇! is much 
bigger than 𝑇!. Table 6-1 shows some observations in the ExoGENI Cloud environment [Baldin et al., 2016]. 
We created VMs which are ‘xo.medium’ configuration in three different locations: Boston, Washington and 
Houston. We found that 𝑇! is widely varying because the internet connection between VMs and Docker hub 
is different between different locations, and 𝑇! is stable for the same VM configurations. For meeting the 
deployment time constraints of time-critical applications in provisioned virtual infrastructure, the key 
challenge is how to minimise the transmission time 𝑇! and predict the installation time 𝑇!. Installation time 
prediction is not the focus of this section—we assume that existing predictors [Smith et al., 1998] can 
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achieve good estimations of installation time. Instead, we focus on the transmission process (𝑇! ) of 
deployment. 

Table 6-1 Comparison of transmission time and installation time in different locations. 

 
The deployment model in this work is a set of deployment requests. The deployment service has to optimise 
the time cost by scheduling component transmissions carefully, and parallelise the data transfer based on the 
time constraint obtained from the application. We model the deployment request as a tuple 𝑅! = (𝑣! , 𝑠!  ,𝑑!  ), 
where 𝑣! is the target virtual machine to deploy request 𝑅!, 𝑠!   is the application size (e.g. in Mb), and 𝑑!  is its 
deadline. As we concentrate on transmission, we model bandwidth information for provisioned VMs as sets 
𝐵 = 𝑏!, 𝑏!, 𝑏!,… , 𝑏! , where 𝑏! denotes the bandwidth of virtual machine 𝑖. This means that the throughput 
of virtual machine 𝑖 cannot exceed 𝑏! during the transmission process, and the bandwidth is stable based on 
the SLA provisioning mechanisms [Casalicchio and Silvestri, 2013] in this context. We denote the 
bandwidth of the target machine 𝑣! as 𝑏!, so that the transmission time of request 𝑅! can be represented as 
𝑇! = 𝑠! 𝑏! . Similarly, the deployment time can be represented as 𝑇! = 𝑠! 𝑏! + 𝑇!. The problem of this 
paper is thus to investigate the scheduling mechanisms needed to meet the deployment deadlines (i.e. ensure 
that 𝑇! ≤ 𝑑!) of time-critical applications in clouds.  

6.2 Methodology and implementation 
DDS aims to provide a deadline-aware, efficient and automatic deployment system that supports time-critical 
applications on infrastructure as a service on cloud systems, focusing on the network of the underlying 
distributed system to provide the best guarantee for deployment within deadlines. We follow a number of 
design principles: 

1. Repository location. The repository for the application is a shared storage from which application 
packages can be fetched to be installed on another machine. The repository can be located in a remote 
server or in the cloud already. The location of the repository can directly impact the deployment time 
because the network bandwidth between cloud VMs and between a VM and a remote repository in a 
different location can be very different. Compared to a remote repository, a local repository within a 
cloud has some obvious advantages. First, the local repository has greater transmission capacity than the 
remote repository. Second, the bandwidth of the local repository inside a cloud is more stable, which 
provides a guarantee regarding the transmission time.  Third, the local repository is more flexible due to 
the possibility of personalized configuration. Thus, DDS would help users to create a local repository 
first if there is only a remote repository from which to fetch application packages. 
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Figure 6-2 Awareness of deadlines can be used to meet two deadlines. 

2. Deadline-aware mechanism. As the goal of DDS to meet the deadline of requests, whether the system 
is aware of the deadline is important for deployment. Consider a common time-critical application 
scenario involving two deployment requests sent to the same application component provider 
simultaneously, where one request has a tighter deadline than the other. The resulting requests share a 
bottleneck via which to transmit application packages. As shown in Figure 6-2, with today's setup, the 
transport protocol (e.g. TCP) strives for fairness and the transmission finishes for both requests almost 
simultaneously. However, only one of the requests meets its deadline which makes the another request 
useless or degrades its value. Alternatively, given explicit information about deployment deadlines, the 
system can arrange the transmission order to better meet the deployment deadline. 

 
Figure 6-3 Awareness of bandwidth can be used to meet two deadlines. 

3. Bandwidth-aware mechanism. In addition to deadline-aware scheduling, to be aware of bandwidth is 
another significant attribute for deployment. Consider another scenario with two deployment requests, 
where the second request pulls a larger application package. The resulting requests also share a link to 
transmit their respective packages. As shown in Figure 6-3, the deployment system has information 
about the deadlines and schedules the transmission based on those deadlines. However only one request 
meets its deadline. Because the transmission bottleneck is the bandwidth of the target machine, there is 
some spare bandwidth on the server which is not used. Thus, given explicit information about the 
bandwidth capacity of each machine in the cloud, the system could schedule more deployment requests 
and leverage the bandwidth more efficiently. 

The main goal of our algorithms is to minimise the deadline miss rate: the application packages should be 
transmitted to the target machine within the deadline wherever possible. In addition to minimising miss rate, 
we should maximize the bandwidth utilisation to reduce the total transmission time. To achieve both these 
goals, we employ EDF to prioritise requests and design bandwidth-aware EDF to support parallel 
transmission and realise dynamic rate control. 

��� ���

R1

R2

Non Deadline Aware

Requests

��� ���

R1

R2

 Deadline Aware

Time Time

��� ���

R1

R2

Non Bandwidth Aware

Requests

��� ���

R1

R2

 Bandwidth Aware

Time Time



643963– SWITCH                                                                                                                                                                          Dissemination level: PU 

 

 

Page 44 of 61 

1. EDF scheduling. The key insight guiding the design of deadline-aware scheduling is derived from the 
classic real-time scheduling algorithm Earliest Deadline First (EDF) [Liu and Layland, 1973], which 
prioritises tasks based on their deadline. EDF is an optimal scheduling algorithm in that if a set of 
deadlines can be satisfied under some schedule, then EDF can satisfy them too. We adopt EDF to 
schedule deployment requests. When a deployment request comes, DDS compares the deadline of new 
request with previous requests and then sets the corresponding priority relative to the other deadlines. 
DDS then puts the new request into the request queue where the requests are sorted by priority. The 
algorithm is described in Algorithm 1. Consequently, DDS obtains the request from the queue and starts 
to transmit application packages to the target machine. 

 
2. Bandwidth-aware EDF scheduling. In addition to EDF scheduling, we design bandwidth-aware 

scheduling in cooperation with EDF scheduling. The key idea of bandwidth-aware scheduling is to make 
use of the spare bandwidth available between the local repository and the target as much as possible for 
parallelising multiple requests. Thus, DDS needs the bandwidth information for each machine in the 
cloud. DDS would collect the bandwidth information before the whole deployment procedure begins.  

 
EDF is optimal when the deadlines can be satisfied. However, without bandwidth information, EDF would 
schedule requests in a sequential way which leads to insufficient utilisation of bandwidth or even missed 
deployment deadlines. However if we directly schedule requests in a parallel way, the bandwidth contention 
among different requests can also cause deployment deadlines to be missed. Therefore, the challenge of 
bandwidth-aware scheduling is how to dynamically allocate transmission rates for deployment requests in 
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order to avoid unnecessary contention. For this purpose, we design bandwidth-aware EDF algorithm as 
described in Algorithm 2. 

As per the description of bandwidth-aware EDF, if there is spare bandwidth in the local repository, DDS will 
continue to obtain requests from the request queue until the required bandwidth is equal or greater than the 
local repository bandwidth. DDS then sets the specific rate for the last deployment request to make sure the 
total required bandwidth is equal to the bandwidth of local repository. Consequently, it avoids bandwidth 
contention with previous deployment requests and makes full use of spare bandwidth to transmit. Once a 
new deployment request arrives, DDS performs bandwidth-aware EDF scheduling after putting the request 
in the request queue. When one deployment request finishes, DDS will allocate the released bandwidth for 
the running requests first, and then perform bandwidth-aware EDF scheduling again. 

6.3 Evaluation 
In this section, we describe experiments for quantitative evaluation of the deadline-aware deployment 
system. We perform three kinds of experiments. First, we evaluate the transmission time using a DDS local 
repository versus a remote repository. Second, we evaluate DDS in comparison with three typical scheduling 
algorithms by running experiments on our cloud test-bed. Third, we evaluate DDS in larger-scale 
simulations. 

6.3.1 Repository Evaluation 
In this section, we compare the transmission time to a target machine from a DDS local repository and a 
remote repository based on Docker. In most common cases, the application provider only has the repository 
outside cloud. Thus, DDS would help users to create local repository within their cloud first. We provision 
two virtual machines with 50Mbps bandwidth in the ExoGENI Boston rack and create a local repository in 
one of them. Then, we use the other machine to fetch the image from the local repository and also the 
original remote repository (Docker Hub). The comparative results are shown in the Table 6-2. Note that the 
transmission time (𝑇!) from the local repository is much less than from the remote repository, the reason 
being that the bandwidth inside Cloud is much better than outside. 

Table 6-2 Comparison of transmission times from different repositories. 

 

6.3.2 Test-bed experiments 
In this section, we evaluate DDS alongside three typical scheduling algorithms in the ExoGENI test-bed. 
ExoGENI is a networked infrastructure-as-a-service (NIaaS) platform where researchers can define the 
network topology and bandwidth of virtual infrastructures. In our experimental setup, we chose the 
“xo.xlarge” type of machine as our local repository, and all other application nodes we chose “xo.medium” 
type machines. The guest OS in VMs which are provisioned for evaluation is Ubuntu 14.04. In the 
experiment, we use iPerf [Tirumala et al., 2005] to simulate the application package transmission, therefore 
the size of application package can be customised via iPerf in the evaluation. For transmission rate control, 
we leverage Linux Traffic Control (TC) to perform deployment request rate limiting. We use two-level 
Hierarchical Token Bucket (HTB) in TC: the root node classifies requests to their corresponding leaf nodes 
based on IP address and the leaf nodes enforce each request rate. We compare the following schemes with 
DDS: 
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• FIFO: All the deployment requests are scheduled by the arrival time of the request in a sequential way. 
• EDF: All the deployment requests are scheduled by the EDF algorithm in a sequential way. 
• PARALLEL: All the deployment requests are scheduled immediately after arrival in a parallel way.  

Through comparison with these three schemes, we can inspect the benefits from DDS for different aspects. 
FIFO is the most common scheduling algorithm in distribution. EDF is optimal in sequential scheduling 
when the deadline can be satisfied, but it is not bandwidth-aware. PARALLEL can make high utilisation of 
the bandwidth, but it is not deadline-aware. We compare the number of schedulable requests (requests that 
meet the deadline) and the total deployment time among different schemes. The number of schedulable 
requests can indicate the satisfaction of deadline requirements. The total deployment time can indicate the 
utilisation of network bandwidth. 

In this experiment, we provision two kinds of bandwidth configuration to evaluate DDS as described by 
Table 6-3. We instantiate four nodes to deploy time-critical applications in ExoGENI. For these four nodes, 
we generate six deployment requests which include the target machine, application size, arrival time and the 
deadline. To understand the scheduling mechanisms in DDS better, we assume that the installation time 𝑇! of 
each application is 1s in this experiment. 

Table 6-3 Bandwidth configuration (left) and deployment requests (right). 

 
In Figure 6-4 (left), we inspect the number of schedulable requests on different schemes. We observe that 
DDS can schedule more requests in two different bandwidth configurations, because sequential scheduling 
(EDF, FIFO) can not meet all the deadlines when multiple requests emerge simultaneously, and direct 
parallel scheduling suffers from bandwidth contention. Figure 6-4 (right) shows the total deployment time of 
various schemes. We note that the total deployment time of DDS is less than EDF and FIFO, and similar to 
PARALLEL. This indicates that DDS makes full use of network bandwidth. 

 
Figure 6-4 Comparison of the number of schedulable requests in various schemes (left) and the total deployment time in 

various schemes (right). 
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6.3.3 Large-scale simulations 
Our simulations evaluate DDS considering the common public cloud providers (EC2, Azure). We evaluate 
the deployment schedulable ratio which is the percentage of schedulable requests in different schemes. 

• VM configuration. We equip the deployment server with 10Gbps bandwidth connection and application 
node with 1Gbps bandwidth connection which are typical configuration in public cloud. In the 
simulation, the number of application nodes range over 10, 20, 40 and 80 nodes which are sufficient to 
account for most distributed cloud applications. 

• Deployment requests. We simulate the deployment service running 10 days (𝑇!"##$#% ) in the 
experiment. During this period, we generate deployment requests in different densities to simulate 
deploying various applications on each node. We denote 𝑆!"!#$!  as the total application size of all 
deployment requests on node 𝑖 . The request density of node 𝑖  is equal to 
𝑆!"!#$! 𝑇!"##!"#  ×  10  𝐺𝑖𝑔𝑎𝑏𝑖𝑡 , and the request density of whole system is the average for each node. 
The overall request density varies from 0.1 to 0.9. In the experiment, the deadline (𝑑!) of each request 
ranges from 10s to 100s, and the application size is equal to 𝑑!   ×  1  𝐺𝑖𝑔𝑎𝑏𝑖𝑡. We assume the installation 
time (𝑇!) is 1s in the simulation. 

 

 
Figure 6-5 Comparison of the deployment schedulable ratio for 10 nodes (top left), 20 nodes (top right), 40 nodes (bottom left) 
and 80 nodes (bottom right).  

Figure 6-5 shows the deployment schedulable ratio in different scenarios. We observe that DDS can reduce 
from 24% to 83% of the deployment deadline miss ratio compared to EDF, from 26% to 89% compared to 
FIFO, and up to 86% compared to PARALLEL. Because EDF and FIFO schedule deployment requests in 
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sequential way, DDS can take advantage of parallelised deployments. The PARALLEL scheme parallelises 
deployments but suffers severe bandwidth contention as request density increases. In contrast, DDS is 
bandwidth-aware and provides dynamic transmission rate control to avoid bandwidth contention for different 
deployment requests. In summary, DDS significantly reduces the number of deadline missing requests for 
deploying cloud applications. 

6.4 Summary 
In recent years, deployment has been an important topic in distributed environment, service-oriented systems 
and cloud computing, as well as in some of SWITCH’s contemporary projects such as ENTICE28. The 
techniques in DDS are related to the following areas of research: 

• Automatic cloud application deployment. To enable automatic deployment has been the focus of 
several recent works. SO-MVDS [Gao et al., 2012] allows users to design and create virtual machines 
with specific services running in them and define a service deployment request to enhance the efficiency 
of service deployment. Li et al. [Li et al., 2012] propose a general approach to application deployment. 
They adopt contextualisation process which is to embed various scripts in VM images to initiate 
applications. DDS, on the other hand, is compatible with Docker containers, achieving automatic 
deployment more easily. 

• On-demand image distribution. The idea of distributing images in clouds efficiently has been explored 
in recent works. [Vaquero et al. 2015] proposes a solution based on combining hierarchical and Peer to 
Peer (P2P) data distribution techniques. VDN [Peng at al., 2012], a new VM image distribution network 
on the top of chunk-level,  enables collaborate sharing in cloud data centres. These approaches focus on 
fast transmission. In contrast, DDS is not only transmitting images efficiently but is also aware of 
deadlines via scheduling mechanisms. 

• Deadline-aware scheduling techniques. D3 [Wilson et al., 2011] and D2 TCP [Vamanan et al., 2012] 
are transport protocols designed for deadline-aware transmission inside data centres. These protocols add 
the deadline information to TCP and provide control mechanisms based on the deadline information. 
Techniques like Karuna [Chen et al., 2016] and pFabric [Alizadeh et al., 2013] prioritise network flows 
to transmit. All these approaches schedule transmission at flow level. In contrast, DDS exploits the 
information of bandwidth to schedule transmission in application level which is more relevant to users 
requirements. 

It is challenging to deploy time-critical applications into clouds while meeting the time constraints of 
deployment. This is an important and practical problem, but has been neglected by prior work in this field. 
For DRIP we use DDS for the deployment agent component in order to help users to create local repositories 
and automatically deploy applications into Clouds. We have investigated the scheduling mechanisms in 
cloud deployment systems and implemented a bandwidth-aware EDF scheduling algorithm in DDS. DDS 
schedules deployment requests based on deadline and bandwidth information to make better scheduling 
decision. In the evaluation, we showed that DDS leverages network resources sufficiently and significantly 
reduces the number of missed deployment deadlines. 

  

                                                        
28 http://www.entice-project.eu/ 
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7 Summary 
The development of DRIP has been conducted in accordance with the basic plan illustrated by Figure 7-1. At 
the time of publication, the project is entering the fifth phase of development, with the integration of the 
second release of the SWITCH workbench, providing tools for provisioning and controlling time-critical 
applications on both private and public clouds, and indeed offering the basic support for inter-cloud 
provisioning needed for the final ‘federated public cloud test-bed’ objective.  

7.1 Software functionality in public releases 
With regards to DRIP, the second release of the SWITCH workbench will contain a fully functional and 
integrated DRIP service suite, managed via a single online manager component. In particular, within this 
deliverable we have reviewed four main topics of research and innovation within the SWITCH project over 
the prior twelve months that serve to directly contribute to the development of DRIP: 

• The extension of the DRIP planner algorithm MEPA to support planning of the placement of SDN 
controllers in software-defined networks. 

• The prototyping of a performance modelling service for collecting information about the 
performance of cloud resources for different kinds of application component, important for helping 
DRIP determine the best selection of resources for a range of different applications with different 
time-critical constraints. 

• The further refinement and experimental evaluation of the DRIP provisioner, supporting multi-site 
provisioning across multiple data centres. 

• The development of a deployment agent for DRIP that can maximise use of bandwidth to expedite 
the retrieval and installation of application components from remote repositories. 

 

 

 

Single	private	
Cloud	test-bed	

Single	public	
cloud	test-bed	

Federated	public	
cloud	test-bed	

Federated	private	
cloud	test-bed	

Implementa8on	
use-cases	

Test	use-cases	

Business	use-cases	

Phase	1-3																											Phase	4																														Phase	5																																					Phase	6	

Phase	4																																	Phase	5																																Phase	6	

Phase	5																												Phase	6	

SWITCH	
(Version	1)	

SWITCH	
(Version	2)	

SWITCH	
(Version	3)	

SWITCH	
(Version	4)	

The	SWITCH	project	can	
be	divided	into	6	

phases.		
Public	release	V1	 Public	release	V2	

Figure 7-1 Overview of SWITCH development phases. 
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Architecture 
components 
(defined in D2.2) 

Functionality in V1 Functionality in 
V2 

Key 
Performance 
Indicators (KPI) 

Current status 

DRIP manager Yes Yes Scalability and 
reliability 

Achieved KPI 

Application 
interpreter 

Yes (part of DRIP 
manager) 

Yes (part of DRIP 
manager) 

Functionality Achieved KPI 

Infrastructure 
Planner 

Yes Yes Support for wide 
range planning 
constraints 

Partial: planner 
supported mainly 
time related 
constraints, e.g., 
performance and 
deadline-based. 

Infrastructure 
interpreter 

Yes (inside DRIP 
manager) 

Yes (inside DRIP 
manager) 

Functionality Achieved KPI 

Infrastructure 
evaluator 

No. Yes Accuracy  Partial: current 
version can do 
correctness 
evaluation. 
Performance fitness 
is still under 
research.   

Discovery service Yes (Inside DRIP 
knowledge base) 

Yes (Inside DRIP 
knowledge base) 

Supported 
providers. 

Implemented 
support for 
ExoGENI, Amazon 
EC2 and FedCloud.  
More will be 
included 

Infrastructure 
Provisioner 

Yes Yes Provisioning 
time, failure 
recovery time. 

Achieved: analysis 
of current 
provisioner 
provisioning time 
in [Zhou et al., 
2016]. 

Resource selector Yes (In planner)  Yes (Part in 
planner, and part as 
performance 
modeller) 

Supported cloud 
providers. 

Support for 
ExoGENI, Amazon 
EC2 and EGI 
FedCloud. 

Cloud broker Yes (Inside 
infrastructure 
provisioner) 

Yes (Inside 
infrastructure 
provisioner) 

Supported 
providers. 

Support for 
ExoGENI, Amazon 
EC2 and EGI 
FedCloud. 
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SLA Negotiation Partially in performance modeller; 
however, the negotiation part will be our 
research topic and not in software. We 
explained the situation during review 
meeting.  

N/A On our research 
agenda, to be 
finished soon.  

SWITCH executor Yes (deployment 
agent, and execution 
for container) 

Yes (Control agents 
for container and 
VM, deployment 
agent with real-
time).   

Deployment time, 
repository 
support, deadline 
support and 
liveness. 

Achieved: analysis 
of deployment 
agent capabilities 
in [Hu et al., 2017]. 

The liveness (fault 
tolerance) is jointly 
with provisioner.  

 

7.2 Innovation 
The innovation of the DRIP system lies in its support for time-critical concerns in the planning and 
provisioning of virtual infrastructure and the deployment and execution of application components on such 
infrastructure. For each major component of DRIP, we can identify a specific key innovation over the 
existing state of the art. 

Component (in release) Current state of the Art Innovation 

DRIP manager Many suites provide integrated 
facilities for Cloud planning and 
provisioning. 

Support for scalable services via use of 
message queuing to distribute 
workloads automatically. 

Infrastructure planner Support for single deadlines for 
complete application workflows 
based on critical path analysis. 

Support for multiple deadlines on 
application workflows. 

DRIP performance 
modeller 

Clouds publish the attributes of the 
resources they offer, which clients 
must evaluate against their 
requirements. 

A framework for automatic testing of 
resources against different kinds of 
application component; ability to 
aggregate information within DRIP 
knowledge base in order to improve 
planning. 

Infrastructure 
provisioner 

Ability to provision a given 
application in a single cloud 
environment, or for multiple clouds 
with manual network configuration. 

Support for multi-locale provisioning 
with a single seamless network topology 
handled automatically by the provisioner 
without intervention by client or 
cloud provider. 

DRIP deployment agent Support for application component 
retrieval from remote repositories. 

Support for optimal use of network 
when retrieving remote components 
to meet deployment deadlines. 
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The DRIP subsystem is used in the project together with the other two to implement the industrial pilot 
cases. Besides which DRIP has also been exploited in EU H2020 ENVRIPLUS project for optimising data 
services in e-Infrastructures. A finished use case is to enhance the data subscription service of European 
EURO-ARGO29 research infrastructure for generating data products for distributed partners. EGI FedCloud 
is used as a test-bed. The demo of the use case is available on YouTube30. A research paper has also been 
submitted to the IEEE e-Science conference. In addition there are a number of other on-going use cases, e.g., 
for optimising data processing workflows in EISCAT_3D31 and EPOS32.  

In the last phase of the project, exploiting DRIP within the integrated SWITCH will be highlighted. A 
detailed exploitation plan and report will be presented in D6.4 “Report on dissemination, communication, 
collaboration, exploitation and standardization V3”. 

  

                                                        
29 http://www.euro-argo.eu  
30 https://www.youtube.com/watch?v=PKU_JcmSskw&t=19s  
31 http://www.eiscat.se 
32 http://www.epos-ip.eu  
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A Resource API 

name	   path	   methods	   description	  
AnsibleOutputC
ontroller 

/user/v1.0/deployer/ansib
le/ 
/user/v1.0/deployer/ansib
le/all 
/user/v1.0/deployer/ansib
le/commands 
/user/v1.0/deployer/ansib
le/ids 
/user/v1.0/deployer/ansib
le/{id} 

GET 
DELETE 
GET 
GET 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
showing	  the	  output	  
from	  ansible	  
executions	  

BenchmarkContr
oller 

/user/v1.0/benchmark/ 
/user/v1.0/benchmark/all 
/user/v1.0/benchmark/ids 
/user/v1.0/benchmark/{id} 

GET 
DELETE 
GET 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
handling	  cloud	  
benchmark	  tests	  
like	  sysbench	  

CloudConfigura
tionController
0 

/user/v0.0/switch/account
/configure/ec2 
/user/v0.0/switch/account
/configure/geni 

POST 
POST 

This	  controller	  is	  
responsible	  for	  
handling	  cloud	  
credentials	  used	  by	  
the	  provisoner	  to	  
request	  for	  
resources	  (VMs).	  

CloudCredentia
lsController 

/user/v1.0/credentials/cl
oud/ 
/user/v1.0/credentials/cl
oud/all 
/user/v1.0/credentials/cl
oud/ids 
/user/v1.0/credentials/cl
oud/sample 
/user/v1.0/credentials/cl
oud/{id} 
/user/v1.0/credentials/cl
oud/upload/{id} 

POST 
DELETE 
GET 
GET 
DELETE GET 
POST 

This	  controller	  is	  
responsible	  for	  
handling	  
CloudCredentials.	  
CloudCredentials	  
are	  a	  represntation	  
of	  the	  credentials	  
that	  are	  used	  by	  the	  
provisoner	  to	  
request	  for	  
resources	  (VMs)	  

ConfigurationC
ontroller 

/user/v1.0/deployer/confi
guration/all 
/user/v1.0/deployer/confi
guration/ids 
/user/v1.0/deployer/confi
guration/post 
/user/v1.0/deployer/confi
guration/upload 
/user/v1.0/deployer/confi
guration/{id} 

DELETE 
GET 
POST 
POST 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
storing	  PlayBook	  
descriptions	  that	  
can	  be	  used	  by	  the	  
planner.	  

DeployControll
er 

/user/v1.0/deployer/all 
/user/v1.0/deployer/deplo
y 
/user/v1.0/deployer/ids 
/user/v1.0/deployer/sampl

DELETE 
POST 
GET 
GET 

This	  controller	  is	  
responsible	  for	  
deploying	  a	  cluster	  
on	  provisoned	  
resources.	  
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e 
/user/v1.0/deployer/{id} 

DELETE GET 

DeployControll
er0 

/user/v0.0/switch/deploy/
kubernetes 
/user/v0.0/switch/deploy/
swarm 

POST 
POST 

This	  controller	  is	  
responsible	  for	  
deploying	  a	  cluster	  
on	  provisoned	  
resources.	  

KeyPairControl
ler 

/user/v1.0/keys/ 
/user/v1.0/keys/all 
/user/v1.0/keys/ids 
/user/v1.0/keys/sample 
/user/v1.0/keys/{id} 

POST 
DELETE 
GET 
GET 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
handling	  user	  public	  
keys.	  These	  keys	  can	  
be	  used	  by	  the	  
provisoner	  to	  allow	  
the	  user	  to	  login	  to	  
the	  VMs	  from	  the	  
machine	  the	  keys	  
correspond	  to.	  

PlannerControl
ler 

/user/v1.0/planner/all 
/user/v1.0/planner/ids 
/user/v1.0/planner/plan/ 
/user/v1.0/planner/vereif
y_plan 
/user/v1.0/planner/{id} 
/user/v1.0/planner/plan/{
tosca_id} 
/user/v1.0/planner/post/{
name} 
/user/v1.0/planner/tosca/
{id} 
/user/v1.0/planner/post/{
level}/{name}/{id} 

DELETE 
GET 
POST 
POST 
DELETE GET 
GET 
POST 
GET 
POST 

This	  controller	  is	  
responsible	  for	  
planing	  the	  type	  of	  
resources	  to	  be	  
provisopned	  based	  
on	  a	  TOSCA	  
description.	  

PlannerControl
ler0 

/user/v0.0/switch/plan/pl
anning 

POST This	  controller	  is	  
responsible	  for	  
planing	  the	  type	  of	  
resources	  to	  be	  
provisopned	  based	  
on	  a	  TOSCA	  
description.	  

ProvisionContr
oller 

/user/v1.0/provisioner/al
l 
/user/v1.0/provisioner/id
s 
/user/v1.0/provisioner/pr
ovision 
/user/v1.0/provisioner/sa
mple 
/user/v1.0/provisioner/{i
d} 

DELETE 
GET 
POST 
GET 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
obtaining	  resources	  
from	  cloud	  
providers	  based	  the	  
plan	  generated	  by	  
the	  planner	  

ProvisionContr
oller0 

/user/v0.0/switch/provisi
on/execute 
/user/v0.0/switch/provisi
on/upload 

POST 
POST 

This	  controller	  is	  
responsible	  for	  
obtaining	  resources	  
from	  cloud	  
providers	  based	  the	  
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plan	  generated	  by	  
the	  planner	  and	  
uploaded	  by	  the	  
user	  

ScriptControll
er 

/user/v1.0/script/ 
/user/v1.0/script/all 
/user/v1.0/script/ids 
/user/v1.0/script/sample 
/user/v1.0/script/upload 
/user/v1.0/script/{id} 

POST 
DELETE 
GET 
GET 
POST 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
handling	  user	  
scripts.	  These	  user	  
can	  be	  used	  by	  the	  
provisoner	  to	  run	  
on	  the	  created	  VMs.	  

ToscaControlle
r 

/user/v1.0/tosca/all 
/user/v1.0/tosca/ids 
/user/v1.0/tosca/post 
/user/v1.0/tosca/upload 
/user/v1.0/tosca/{id} 

DELETE 
GET 
POST 
POST 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
storing	  TOSCA	  
descriptions	  that	  
can	  be	  used	  by	  the	  
planner.	  

UserController /manager/v1.0/user/all 
/manager/v1.0/user/ids 
/manager/v1.0/user/modify 
/manager/v1.0/user/regist
er 
/manager/v1.0/user/{id} 

GET 
GET 
POST 
POST 
DELETE GET 

This	  controller	  is	  
responsible	  for	  
handling	  user	  
accounts	  

UserController
0 

/manager/v0.0/switch/acco
unt/register 

POST This	  controller	  is	  
responsible	  for	  
handling	  user	  
accounts	  

UserPublicKeys
Controller0 

/user/v0.0/switch/provisi
on/confuserkey 

POST This	  controller	  is	  
responsible	  for	  
handling	  user	  public	  
keys.	  These	  keys	  can	  
be	  used	  by	  the	  
provisoner	  to	  allow	  
the	  user	  to	  login	  to	  
the	  VMs	  from	  the	  
machine	  the	  keys	  
correspond	  to.	  

UserScriptCont
roller0 

/user/v0.0/switch/provisi
on/confscript 

POST This	  controller	  is	  
responsible	  for	  
handling	  user	  
scripts.	  These	  user	  
can	  be	  used	  by	  the	  
provisoner	  to	  run	  
on	  the	  created	  VMs.	  

B Data Types 

type	   description	  

AnsibleOutput  This	  class	  represents	  the	  the	  ansible	  out	  put	  for	  a	  specific	  VM.	  This	  can	  be	  
used	  as	  a	  archive	  /	  log	  of	  ansible	  executions	  	  
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AnsibleResult  
This	  class	  represents	  an	  ansible	  execution	  result.	  This	  can	  be	  used	  as	  a	  
archive	  /	  log	  of	  ansible	  executions	  for	  example	  how	  much	  time	  it	  took	  for	  
execution,	  errors	  etc.	  	  

BenchmarkResult  This	  is	  the	  base	  class	  for	  users	  to	  own	  resources.	  Many	  classes	  extend	  this	  
class	  	  

CloudCredential
s  

This	  class	  represents	  the	  cloud	  credentials.	  They	  are	  used	  by	  the	  
provisoner	  to	  request	  for	  resources.	  	  

DeployParameter  
This	  class	  is	  used	  by	  the	  deployer	  to	  deploy	  software	  
(swarm,kubernetes,ansible).	  It	  is	  generated	  by	  the	  provisioner	  to	  contain	  
VM	  information.	  	  

DeployRequest  This	  class	  holds	  the	  necessary	  POJO	  IDs	  to	  request	  the	  deployment	  of	  a	  
software	  	  

DeployResponse  
This	  class	  represents	  the	  response	  of	  a	  deploy	  request.	  It	  may	  hold	  a	  key	  
pair	  used	  for	  logging	  in	  and	  managing	  a	  docker	  cluster.	  Currently	  they	  key	  
pair	  is	  only	  used	  by	  kubernetes	  	  

Key  
This	  class	  represents	  a	  key.	  This	  key	  can	  be	  used	  to	  either	  login	  to	  a	  VM	  
created	  by	  the	  provisiner	  or	  by	  the	  VM	  to	  allow	  the	  user	  to	  login	  to	  the	  
VMs	  from	  the	  machine	  the	  keys	  correspond	  to.	  	  

KeyPair  This	  class	  hold	  the	  pair	  of	  public	  private	  keys.	  The	  keys	  may	  be	  used	  for	  
logging	  in	  VMs.	  	  

KeyType  This	  enu	  specifies	  if	  a	  key	  is	  private	  or	  public	  	  

KeyValueHolder  This	  is	  a	  generic	  class	  that	  hold	  key-‐value	  pairs.	  It's	  main	  usage	  is	  to	  hold	  
abstract	  types	  such	  as	  TOSCA.	  	  

OwnedObject  This	  is	  the	  base	  class	  for	  users	  to	  own	  resources.	  Many	  classes	  extend	  this	  
class	  	  

PlanRequest  This	  class	  represents	  a	  plan	  request	  sent	  to	  the	  planner.	  	  

ProvisionReques
t  

This	  class	  is	  a	  holder	  for	  the	  the	  object	  IDs	  that	  are	  required	  by	  the	  
provisioner	  to	  request	  for	  cloud	  resources.	  	  

ProvisionRespon
se  This	  class	  represents	  a	  description	  of	  provisioned	  resources	  	  

Script  This	  class	  represents	  a	  simple	  script	  that	  can	  run	  on	  a	  provisioned	  VM.	  	  

User  This	  class	  represents	  a	  user.	  	  

 


