

D3.4 Technical
description of the DRIP

subsystem

Software Workbench for Interactive, Time Critical and Highly self-adaptive Cloud applications

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 643963 (SWITCH project).

Start date of project: 01.02.2015. Duration: 36 months until 31.01.2018

*Dissemination Level
PU Public
CI Classified, information as referred to in Commission Decision 2001/844/EC.
CO Confidential, only for members of the consortium (including the Commission Services)
**Type
R Document, report (excluding the periodic and final reports)
DEM Demonstrator, pilot, prototype, plan designs
DEC Websites, patents filing, press & media actions, videos, etc.
OTHER Software, technical diagram, etc.

Due Date: 31st July 2017

Delivery: 31st July 2017

Lead Partner: UvA

Dissemination Level*: PU

Type**: R

Status: Draft

Approved: All partners

Version: 1.0

643963– SWITCH Dissemination level: PU

Page 2 of 61

Contributors

Contributors Role

Paul Martin, Cees de Laat, Zhiming Zhao Editors

Junchao Wang, Huan Zhou, Yang Hu, Arie Taal, Spiros Koulouzis Content contributors

Vlado Stankovski, Guadalupe Flores Internal reviewers

Document history

Version Date Author Description

0.1 30/6/17 Paul Martin Compilation of inputs to deliverable.

0.2 4/7/17 Paul Martin First integration pass complete. Some minor
details to refine.

0.3 5/7/17 Paul Martin Fixed mathematical typesetting and
bibliography. Minor corrections to text.

0.4 6/7/17 Paul Martin, Spiros
Koulouzis

Added API and data type details as appendices
to document.

1.0 17/7/17 Paul Martin Revised deliverable to address the comments of
the internal reviewers.

Keywords

Cloud, programmable infrastructure, planning, infrastructure provisioning, application deployment,
runtime control, time-critical applications.

643963– SWITCH Dissemination level: PU

Page 3 of 61

Table of Contents

EXECUTIVE	 SUMMARY	 ...	 4	
1	 INTRODUCTION	 ..	 5	
2	 IMPLEMENTATION	 ARCHITECTURE	 AND	 SOFTWARE	 ..	 8	
3	 INFRASTRUCTURE	 PLANNING	 FOR	 SWITCH	 APPLICATIONS	 ..	 12	
3.1	 INFRASTRUCTURE	 PLANNING	 REVIEW	 ..	 12	
3.2	 INFRASTRUCTURE	 PLANNER	 EVALUATION	 ...	 14	
3.3	 QOS-‐AWARE	 VIRTUAL	 SDN	 NETWORK	 PLANNING	 REVIEW	 ..	 19	
3.4	 SDN	 NETWORK	 PLANNING	 PROBLEM	 SPECIFICATION	 ...	 20	
3.5	 EVALUATION	 ..	 22	

4	 DYNAMIC	 CLOUD	 PERFORMANCE	 INFORMATION	 ..	 25	
4.1	 STATE	 OF	 THE	 ART	 ..	 25	
4.2	 CLOUD	 PERFORMANCE	 COLLECTOR	 ...	 26	
4.3	 PERFORMANCE	 DATA	 COLLECTION	 EXPERIMENTS	 ...	 27	
4.4	 DISCUSSION	 ..	 33	

5	 INTER-‐LOCALE	 VIRTUAL	 CLOUD	 PROVISIONING	 ..	 34	
5.1	 CHALLENGES	 AND	 GAPS	 ...	 34	
5.2	 METHODOLOGY	 AND	 USE	 ...	 34	
5.3	 EVALUATING	 NEW	 DEVELOPMENTS	 ..	 38	
5.4	 SUMMARY	 ...	 40	

6	 DEADLINE-‐AWARE	 DEPLOYMENT	 FOR	 SWITCH	 APPLICATIONS	 ...	 41	
6.1	 PROBLEM	 SPECIFICATION	 ..	 41	
6.2	 METHODOLOGY	 AND	 IMPLEMENTATION	 ..	 42	
6.3	 EVALUATION	 ..	 45	
6.4	 SUMMARY	 ...	 48	

7	 CONCLUSIONS	 ..	 49	
BIBLIOGRAPHY	 ..	 53	
A	 RESOURCE	 API	 ..	 58	
B	 DATA	 TYPES	 ..	 60	

643963– SWITCH Dissemination level: PU

Page 4 of 61

Executive summary
The SWITCH workbench is composed of three autonomous subsystems, each of which is primarily
responsible for handling one of the three major phases of the SWITCH application lifecycle: development,
provisioning and runtime control. The Dynamic Real-time Infrastructure Planner (DRIP) is the
subsystem of SWITCH that handles the provisioning of virtual infrastructure for time-critical applications
within cloud environments. In order to provision an infrastructure suitable for hosting a time-critical
application however, it is necessary to produce a plan describing the topology and composition of a virtual
infrastructure that can be realised using the services of either a single cloud provider or possibly a federation
of providers. It is also necessary to be able to automatically retrieve and install application components on
the provisioned infrastructure. The purpose of this deliverable is to describe technical aspects of the DRIP
subsystem as implemented in the SWITCH public releases, building upon the design and development work
described in earlier SWITCH deliverables, particularly Deliverable 3.2 “Design specification for the
infrastructure planning service”. It provides an updated description of the DRIP architecture and
technologies, and provides in-depth descriptions of some of the key research developments that have been
implemented over the past twelve months, including:

• Updated experimental evaluation of the DRIP planner for multi-deadline time-critical applications,
originally specified in D3.2, now with support for the optimal configuration of software-defined
networks—in particular determining the best placement of SDN controllers.

o Experimental comparison of the DRIP planner algorithm (MEPA) with IC-PCP and CPI (see
Section 3) is provided, based on the work in [Wang et al., 2017a].

o A description of an extension to MEPA (TCPlanner), which identifies the best placement of
SDN controllers, is also provided.

• A description of a dynamic service for gathering Cloud performance information, needed to unlock
the full potential of QoS-aware infrastructure planning.

o The process of provisioning and running infrastructure for testing Cloud resources is
described.

o A sample of the experiments performed is provided to better characterise the contribution of
the service to SWITCH [Elzinga et al., 2017].

• An updated description of the DRIP provisioning system, focusing on multi-site provisioning that
allows for the construction of ‘virtual clouds’ in a multi-cloud environment based on a TOSCA
specification generated within DRIP.

o The basic scheme for specifying a multi-site plan in TOSCA is described.
o Data transfer across the Internet to provisioned infrastructure is experimentally analysed in

order to better evaluate the feasibility of this kind of multi-site infrastructure [Zhou et al.,
2016a, 2016b, 2016c].

• An updated description of the DRIP deployment agent, describing how DRIP can optimise the
retrieval and installation of remote application components to make best use of available network
bandwidth in limited time windows:

o The deployment agent is based on the Deadline-aware Deployment System (DDS) proposed
by [Hu et al., 2017].

o DDS has been experimentally evaluated on private Cloud, demonstrating superior ability to
schedule application component deployments on virtual infrastructure within a deadline over
a number of common real-time scheduling algorithms.

The DRIP subsystem, along with the rest of the current SWITCH technology suite, can be found online at:
https://github.com/switch-project.

643963– SWITCH Dissemination level: PU

Page 5 of 61

1 Introduction
The SWITCH workbench consists of three subsystems, each taking primary responsibility for one of the
three key parts of the time-critical application lifecycle on cloud infrastructure: development, provisioning
and adaptation. The provisioning of a virtual infrastructure for a time-critical application requires careful
planning of the host infrastructure based on a well-defined application specification. This specification must
capture not only the application workflow, but also the constraints upon its components’ operations, the
requirements for monitoring those operations, and the adaptability of the application—the extent by and
conditions under which the application topology can change as the application enters different ‘modes’ of
operation. To plan for such applications, there needs to be careful selection of resources from one or more
cloud providers, and these resources need to operate to the levels dictated by the applications’ time-critical
requirements. This requires an understanding of not only the core characteristics of the cloud resources (e.g.
virtual machines) on offer, but also an understanding of the connectivity between components. Finally, in
order to ensure adequate quality of service, time-critical applications on clouds need to be backed up by
strong service level agreements that assert that the key characteristic properties of resources upon which
planning is contingent are satisfied and maintained throughout the lifetime of a given application
deployment.

The Dynamic Real-time Infrastructure Planner (DRIP) is responsible for the planning, validation and
provisioning of the virtual infrastructure enlisted to support an application specified using the SWITCH
Interactive Development Environment (SIDE). The virtual infrastructure (providing compute power, storage
and network for the application) described by DRIP should implement the architecture of the application
efficiently and in adherence with the constraints imposed by the developer. This infrastructure should be
designed in full knowledge of the offerings provided by available cloud services, as well as the support
services required to execute and manage the application at runtime. Furthermore, once DRIP has formulated
an acceptable proposed infrastructure, it should automatically negotiate with cloud providers in real-time to
provision the infrastructure with respect to an agreed set of service-level agreements (SLAs) that will satisfy
(in principle) all quality of service (QoS) requirements. With those agreements in place and the infrastructure
provisioned (which may extend beyond a single cloud), DRIP will then initialise the execution of the
application and pass control over to the Autonomous System Adaptation Platform (ASAP) that will control it
in tandem with the application developer.

[Laplante and Ovaska, 2011] define a real-time system as "a computer system that must satisfy bounded
response-time constraints or risk severe consequences". The key notion is that of response time, the time
between a system or system component receiving inputs and realising the required output behaviour. Our
notion of ‘time-critical application’, as expressed in the original SWITCH description of work, refers
specifically to distributed real-time applications that must satisfy one or more response-time constraints
imposed on some subset of the application's constituent components, e.g. to respond within a certain time
window to new sensor data (as in the case of the elastic disaster early warning pilot case provided by BEIA),
to scale seamlessly to new users (as in the case of the unified communication platform case provided by
WT), or to minimise the latency across the pipeline used to process video streams (as in the case of the cloud
video studio pilot case provided by MOG). The distribution of components is of particular concern, because
then the communication latency between components becomes just as important, if not more so, than the
performance of the individual parts. To further compounding the challenge we face, the applications we are
concerned with often have multiple overlapping response-time constraints on different parts of the
application workflow. The SWITCH project must address multiple levels of deadlines on application
execution, and it is the role of the DRIP subsystem within SWITCH to provision infrastructures that can
guarantee sufficient performance across the entire topology of virtualised resources conscripted in a virtual
infrastructure. Note that our concern is not with executing applications as quickly as possible, but with
ensuring stable performance within strict boundaries in the most cost-effective manner feasible (where
‘cost’, particularly in private Clouds, might be measured in terms of metrics other than money, such as
energy consumption).

643963– SWITCH Dissemination level: PU

Page 6 of 61

The actual nature of individual response-time constraints varies. For example, often time constraints imposed
on the acquisition, processing and publishing of real-time observations, not least in scenarios such as weather
prediction or disaster early warning [Poslad et al., 2015]. The ability to handle such scenarios is predicated
on the time needed for customisation of the runtime environment and the scheduling of workflows [Zhao et
al., 2011], while the steering of applications during complex experiments is also temporally bounded [Evans
et al. 2015]. Time constraints are imposed on the scheduling and execution of tasks that require high
performance or high throughput computing (HPC/HTC), on the customisation, reservation and provisioning
of suitable infrastructure, on the monitoring of runtime application and infrastructure behaviour, and on
runtime controls. Failure recovery for deployed services and applications in real time is also important when
supporting time-critical applications; time constraints are not only imposed on failure detection, but also on
decision-making and recovery.

Figure 1-1 Terminologies related to time-critical applications.

Figure 1-1 defines a simple taxonomy for classifying temporal requirements. We have speed critical
applications, where the objective is simply to minimise the completion time; these applications most suit the
high-performance computing paradigm. Otherwise, real-time applications are often characterised by
bounded response time constraints on inputs, with certain consequences upon failure to meet deadlines
[Laplante and Ovaska, 2011]. Based on the impact of a system not responding on time, a real-time
application is referred to as hard real-time when any deadline it misses leads to an immediate failure of the
application, soft real-time when missing deadlines only leads to degradation of perceived performance, and
firm real-time when individual missed deadlines will not lead to immediate failure, but too many misses
notably will. Nearly real-time (NRT) applications are those with an intrinsic yet bounded delay introduced
by data processing or transmission. Note that this does not make all NRT applications `soft'—such
applications can still impose a hard requirement for processing to fall within the permitted bounds.

In the context in which SWITCH is mainly intended to operate, we expect most constraints to be soft or firm
rather than hard. An application system where a single failure to respond within a specific time window is
actively disastrous is probably not a good candidate for hosting in the Cloud, but a major objective of
SWITCH is to tackle the problem of how the Cloud can be augmented with technologies such as SDN to
raise the general quality of service that can be guaranteed by an application so as to make its use feasible for
increasingly 'firm' applications. Thus DRIP must support a range of different kinds of deadline constraint,
with varying levels of firmness (allowing DRIP to prioritise between softer and harder constraints).

In this deliverable, we report on the current implementation of the DRIP subsystem of SWITCH (Section 2),
and examine in more detail the key research and development activities conducted in the previous twelve

Quality-critical application

Time-critical application

Speed-critical application Real-time application

Soft real-time application Firm real-time application Hard real-time application

Near real-time application

Other kinds of application…

High Performance Computing
application

643963– SWITCH Dissemination level: PU

Page 7 of 61

months that have led to the realisation of the DRIP architectural design, essentially expanding on the
equivalent treatment in the earlier Deliverable 3.2. These key activities can be summarised as follows:

• The development of a QoS and SDN aware planner for multi-deadline application workflows
(Section 3); data-oriented workflows that capture the composition and dependencies of a time-
critical application with multiple overlapping constraints on the response time of different subsets of
application components. The planner uses information about the performance of specific kinds of
virtual resource and their comparative running costs in order to determine the most cost-effective
configuration of virtual infrastructure that will meet the deadline requirements of an application.
This planner, which builds upon the state-of-the-art in critical path planning algorithms, is a key part
of DRIP, able to process application specifications described in accordance with the TOSCA
(Topology and Orchestration Specification for Cloud Applications) standard for cloud applications,
and also determine the optimal placement of controllers in SDN-enabled infrastructures.

• The development of a dynamic Cloud performance measurement service (Section 4) that can be
used to inform and guide the DRIP infrastructure planner by testing different VM offerings against
different kinds of application component, and collecting that information in order to produce the
performance matrices needed by the planner to operate at its full potential. This service can gather
performance information from various sources, including in principle the monitoring service
provided by ASAP.

• The development of a fast inter-Cloud provisioning service (Section 5) that can partition virtual
infrastructure topologies into parallel slices that can be provisioned in parallel on multiple physical
infrastructures, potentially provided on different cloud platforms. This service acts as an
intermediary between the application developer and one or more cloud providers, performing any
necessary topological transformation whilst maintaining the critical logical dependencies between
application components. Such fast provisioning may be necessary in cases where application
adaptation (e.g. migration of virtual machines) or failure recovery cannot occur without significant
restructuring of the infrastructure already provisioned, reducing both the time needed for such an
operation, and the portion of the infrastructure that actually needs to be remodelled.

• The design of a deployment service for fast retrieval and installation of application
components from a remote repository (Section 6) that can deploy application components onto
planned virtual infrastructures, and provide a control interface for use by the ASAP subsystem. The
SWITCH project has chosen Docker1 as the default technology to wrap application components,
because of its lightweight and efficient booting. We can also clearly see the use of containers as a
trend in many different cloud projects—either provided directly on physical infrastructure or on
virtual machines. To provide maximum compatibility with a range of cloud providers, we have
chosen VMs as the basis for deploying Docker containers for our pilot cases.

Being able to plan compatible infrastructure topologies for a sufficient range of multi-deadline application
workflows, to be able to ensure the fast provisioning of both intra- and inter-cloud virtual infrastructure, and
to be able to deploy application components quickly and efficiently represent the key contributions of DRIP
to the overall SWITCH project. The following section describes the implementation of DRIP that is to be
found in the final SWITCH public release, which realises all the key functionalities of the DRIP design
published in Deliverable 3.2.

1 https://www.docker.com/

643963– SWITCH Dissemination level: PU

Page 8 of 61

2 Implementation architecture and software
The DRIP subsystem is intended to provide machinery for realising a number of key actions during the
lifecycle of a time-critical cloud application brokered using the SWITCH workbench: infrastructure
planning, infrastructure provisioning and application deployment. However, DRIP also must provide a
means to perform application control at runtime, and resource discovery throughout and outside of the main
application lifecycle. These actions, and the core components of the DRIP subsystem that relate to them, are
packaged together as a single decentralised system coordinated via a dedicated DRIP manager, as shown in
Figure 2-1. On the upper level, the manager offers a RESTful API and component coordination capabilities,
with the message broker validating and routing messages between components and the manager. On the
lower level, the planner builds a provision plan based on specific constraints, the infrastructure provisioner
interacts with different Cloud providers to offer the virtual infrastructure, and finally the deployment agent
installs application components. The knowledge base stores information about Cloud services and other
persistent data needed by DRIP and ASAP to function, assisted by the performance modeller, which helps
DRIP build a working knowledge of current Cloud resources and their performance related to particular
kinds of application component.

Figure 2-1 DRIP implementation architecture.

The DRIP service is made up of a number of components:

1. The infrastructure planner uses an adapted partial critical path algorithm to produce efficient
infrastructure topologies based on application workflows and constraints by selecting cost-effective
virtual machines [Wang et al., 2017a], customising the network topology among VMs, and placing
network controllers for the networked VMs [Wang et al., 2017b].

2. The performance modeller allows for testing of different cloud resources against different kinds of
application component in order to provide performance data for use by the infrastructure planner and
other components inside and outside of DRIP [Elzinga et al., 2017].

27	27	

Clients	
(SIDE/ASAP	or	others)	

Restful interface

DRIP
Knowledge

base

Planner Provisioner	 Deployment	
agent	

Message	broker	

Q
ue

ue
	

Q
ue

ue
	

Q
ue

ue
	

DRIP	manager	

Q
ue

ue
	

Performance
modeller

Q
ue

ue
	

Cloud	

Control
agents

Control
agents

643963– SWITCH Dissemination level: PU

Page 9 of 61

3. The infrastructure provisioner can automate the provisioning of infrastructure plans produced by the
planner onto underlying infrastructure services. The provisioner can decompose the infrastructure
description and provision it across multiple data centres (possibly from different providers) with
transparent network configuration [Zhou et al., 2016a].

4. The deployment agent installs application components onto provisioned infrastructure. The deployment
agent is able to schedule based on network bottlenecks, and maximize the satisfaction of deployment
deadlines [Hu et al., 2017].

5. The infrastructure control agents are a set of APIs that DRIP provides to applications to control the
scaling containers or VMs and for adapting network flows. They provide access to the underlying
programmability provided by the virtual infrastructures, e.g., horizontal and vertical scaling of virtual
machines, by providing interfaces by which the infrastructure hosting an application can be dynamically
manipulated at runtime.

6. The DRIP manager is implemented as a web service that allows DRIP functions to be invoked by
outside clients as services. Each request is directed to the appropriate component by the manager, which
is responsible for coordinating the individual components and scaling them if necessary. The manager
also maintains a database containing user accounts.

7. The communication between the manager and the individual components is facilitated by a message
broker. Message brokering is an architectural pattern for message validation, transformation and
routing, helping compose asynchronous, loosely coupled applications by providing transparent
communication to independent components.

8. Resource information, credentials, and application workflows are all internally managed via a
knowledge base. It maintains the descriptions of the cloud providers, resource types, performance
characteristics, and other relevant information. The knowledge base also provides an interface for these
agents to look up providers, resources and runtime status data during the execution of an application.

The prototype of DRIP is based on industrial and community standards. The infrastructure planner is
currently specified in YAML (formerly ‘Yet Another Markup Language’ but now ‘YAML Ain’t a Markup
Language’) in compliance with the Topology and Orchestration Specification for Cloud Applications
(TOSCA)2. The infrastructure provisioner uses the Open Cloud Computing Interface (OCCI)3 as its default
provisioning interface, and currently supports the Amazon EC24, European Grid Initiative (EGI) FedCloud5
and ExoGeni6 Clouds. The deployment agent can deploy overlay Docker clusters using Docker Swarm or
Kubernetes7. It may also deploy any type of customised distributed application based on Ansible playbooks8.
The infrastructure control agents are set of API that DRIP provides to applications to control the
infrastructure for scaling containers or VMs and adapting network flows. The manager provides a RESTful
interface. DRIP uses the Advanced Message Queuing Protocol (AMQP) and RabbitMQ as its message
broker where each process of each component is represented by a separate queue; this scalable architecture
allows DRIP to be extended with additional components (e.g. planners) in order to handle larger workflows
(e.g. in the case of a single DRIP service being provided to a large organisation for several applications). All
DRIP software is open source; the essential characterisation of all of these components is that of independent
micro-services that are able to perform their designated functions and their own reasoning autonomously,
allowing for different individual implementations of components to be used by different and future
configurations of the SWITCH workbench. This the DRIP components are made available as open source
under the Apache License Version 2.0; the software has been containerised and can be provisioned and
deployed on federated virtual infrastructures within minimal configuration. They can be obtained either via

2 https://www.oasis-open.org/committees/tosca/
3 http://occi-wg.org/
4 https://aws.amazon.com/cn/ec2
5 https://www.egi.eu/federation/egi-federated-cloud/
6 http://www.exogeni.net/
7 https://kubernetes.io/
8 https://www.ansible.com/

643963– SWITCH Dissemination level: PU

Page 10 of 61

the SWITCH release repository at https://github.com/switch-project or directly via the DRIP development
repository at https://github.com/QCAPI-DRIP.

Figure 2-2 shows the basic process of using DRIP as a sequence diagram.

Figure 2-2 Sequence diagram describing how DRIP plans and provisions virtual infrastructure and how it deploys software.

The first step to obtain and manage a virtual infrastructure is to create an abstract definition of that
infrastructure as a TOSCA description; this is a YAML structure text file describing the application
workflow and characteristics, as provided for example by the SIDE subsystem of SWITCH (for more detail
about TOSCA and its use by SWITCH, see Deliverable 2.4 “Concept description for application-
infrastructure co-programming”).

proxy_transcoder:

 type: switch.nodes.softwarecomponent.proxy_transcoder

 capability: proxy_transcoder

 properties:

 publish_ports: {get_input: proxy_trans_port}

 artifacts:

 docker_image:

 file: proxy_transcoder

 type: switch.artifacts.docker

 repo: SWTICH_MOG_Docker_Hub

 interfaces:

 standard:

 create:

 implementation: install.sh

 configuration:

 implementation: config.sh

:DripManager

:MessageBroker

:Planner

:Provisioner :CloudProvider

:User :KnowledgeBase :DeploymentAgent

upload(tosca:file):string

plan(tosca_UID:string):string

save_tosca(tosca:file):string

provision(plan_UID:string):string

deploy(provision_UID:string,
config_UI:string):string

read(UID:string):file

send(message:string, queue:string):file plan(tosca:file):file

save(plan:file):string

read(UID:string):file

send(message:string, queue:string):file provision(plan_file:file):file request_resources(resource_list:list)

read(UID:string):file

send(message:string, queue:string):file deploy_software(software_description:description, vm_description:list)

643963– SWITCH Dissemination level: PU

Page 11 of 61

 input:

 proxy_codec_profile: {get_intput: codec_profile}

 requirements:

 host:

 node_filter:

 capability:

 host:

 properties:

 mem_size: 8GB

Figure 2-3 Sample of TOSCA-compliant YAML used by DRIP for planning/provisioning.

This description may contain network requirements such as desired bandwidth or network topology. For
example a user may need a cluster with a private network. As soon as the user has specified the TOSCA
description it can uploaded to DRIP via a POST request. At this point the TOSCA description is saved on the
user’s account under a unique ID. Next, the user may request a concrete plan from DRIP. This can be
achieved by sending a GET request to DRIP containing the TOSCA description ID. The manager will direct
the request to the planner which will generate a plan and return the plan’s unique ID to the user. The
generated plan will be further used by the provisioner to realise the virtual infrastructure. The provisioner
will use the plan along with the necessary cloud credentials stored in the manager to request resources from
one or more cloud providers. Finally, the deployment agent can use a description of the provisioned virtual
infrastructure to deploy application components. The internal activities of the components follow the logical
sequences already described in Deliverable 3.2.

The main interface by which external actors (such as the SIDE client) can invoke DRIP is provided by the
DRIP manager. The control agent, of which multiple instances might be deployed alongside an application at
runtime, provides an API for invoking operations on an application or its host infrastructure, which is not
shown at this level of abstraction; however it can be seen that the control agent can itself invoke the DRIP
manager when required to perform adaptations of a live application that require the use of other DRIP
components, for example to deploy additional application components or to re-plan an infrastructure entirely
(though the general idea in SWITCH is to minimise such drastic actions by ensuring that the original
infrastructure planned and provisioned for an application has sufficient flexibility to handle adaptations
without the need for this, it is nonetheless important to have such capability when it is unavoidable). A full
specification of the API can be found at https://github.com/QCAPI-DRIP, with the current version also
provided as Appendix A in this document.

In the following sections, we describe the research and innovation that has been carried out in the last year,
focusing on each of the key components of the DRIP system and surveying their design, implementation and
experimental evaluation.

643963– SWITCH Dissemination level: PU

Page 12 of 61

3 Infrastructure planning for SWITCH applications
Executing time-critical applications within cloud environments while satisfying execution deadlines and
response time requirements is challenging due to the difficulty of securing guaranteed performance from the
underlying virtual infrastructure. Cost-effective solutions for hosting such applications in the Cloud require
careful selection of cloud resources and efficient scheduling of tasks. Existing solutions for provisioning
infrastructures for time constrained applications are typically based on a single global deadline. Many time-
critical applications however have multiple internal time constraints when responding to new input. In this
section we review the cloud infrastructure planning algorithm originally presented in D3.2 and further
detailed by Wang et al. [2017a] that accounts for multiple overlapping internal deadlines on sets of tasks
within an application workflow. In order to better compare with existing work, we adapted the IC-PCP
algorithm of Abrishami et al. [2013] (see below) and then compared it with our own algorithm using a large
set of workflows generated at different scales with different execution profiles and deadlines. Our results
show that the proposed algorithm can satisfy all overlapping deadline constraints where possible given the
resources available, and do so with consistently lower host cost in comparison with IC-PCP. Since D3.2,
additional research and development has been carried out into accounting for and supporting software-
defined networking (SDN), with the automatic selection and deployment of SDN controllers to augment data
transfer between VMs provisioned for a given time-critical application. Thus we will provide an updated
summary of the core algorithm originally presented in D3.2, and then provide a more detailed examination of
the additional support prototyped for SDN controller placement.

The research and development results of this section have been published in international journal of Future
Generation Computer System [Wang, 2017a] and IEEE IM [Wang, 2017b].

3.1 Infrastructure planning review
Deelman et al. [2009] provide a survey of the different kinds of workflow found in the e-science domain.
Based on this, we can classify workflows deployed on virtual infrastructure into two basic categories:
scientific workflows and service workflows. Scientific workflows are workflows in which each task is
executed once and the virtual resource on which the task is deployed is released upon completion of the task
and all following communication between the task and its successors. Service workflows are those with tasks
that can be regarded as persistent services, where the tasks persist until the whole application is completed,
and have to continue to respond to new inputs for the entire duration of the application. Workflows in both
categories may exhibit multiple deadlines, but our concern is with the latter kind of workflow, which are
often used for time-critical applications in (for example) environmental monitoring. UrbanFlood
[Krzhizhanovskaya et al. 2011] is an example of an early warning system that tries to solve the problem of
flood control, while Kosukhin et al. [2015] presents an architecture for performing extreme metocean event
forecasting on cloud platforms. In the case of the UrbanFlood system, the workflow has multiple stages with
separate modules for sensor monitoring, AI anomaly detection, reliability analysis, breach simulation, virtual
dikes, and decision support. Such a system can have multiple internal deadlines in order to ensure timely
responses, especially if individual modules must report to other external systems; however the quality of
service is not addressed by Krzhizhanovskaya et al. when planning the infrastructure for the application.

Allocating and scheduling cloud resources for application workflows has become increasingly important for
both the cloud provider and application developer, and so there are now many scheduling algorithms
available to determine the amount and type of virtual machines needed to execute such workflows at
minimal cost. To the best of our knowledge however, all this work addresses the problem of planning
infrastructures for workflows that have a single global single deadline, rather than multiple internal dead-
lines, which is our main concern within the context of SWITCH.

There exist a number of works that focus on optimal resource assignment on virtual infrastructure under
different conditions and assumptions. Yu et al. [2005] propose a method to minimise the execution cost of a
workflow to satisfy a global deadline. Their method first clusters the sequential tasks that have only one

643963– SWITCH Dissemination level: PU

Page 13 of 61

parent and child together and assigns each task with a sub-deadline based on its minimum processing time
and the sub-deadlines of its predecessor. Each task is then assigned to the least expensive virtual machine
(VM) that can meet the deadline—however, the communication cost between tasks is not considered, nor the
presence of multiple deadlines. The Infrastructure-as-a- Service Cloud Partial Critical Paths (IC-PCP)
algorithm [Abrishami et al., 2013] calculates partial critical paths through the application workflow in order
to schedule the deployment of tasks on the cloud in order to solve the same problem. IC-PCP can be
combined with the approach taken by Yu et al.; after finding a partial critical path, each task in the path is
assigned a sub-deadline with the execution time in proportion to the whole partial critical path length. The
tasks in the workflow are then assigned to the cheapest VMs that still meet those deadlines. Though
originally formulated to meet a global deadline, support for additional internal deadlines in IC-PCP can be
added by overriding the generated sub-deadlines with pre-defined deadlines where the latter are more strict.

The planner we have developed is based on the IC-PCP algorithm, but we make a number of assumptions
different from those made by Abrishami et al. For one, we assume that after one task transfers its results to
all its successors, the VM where the task is deployed is not released, and instead the task will act as a
persistent service waiting for more input—thus the deadline for a given task must be satisfied every time the
task receives new input. We also make the assumption that every task in the workflow will be deployed on
its own VM, both for simplicity, and because sharing VMs impacts the performance of tasks [Cai et al.,
2016], and our focus is on time-critical applications. Most importantly, we assume that workflows can have
multiple internal deadlines on different processes based on the requirements of users or downstream services.

Our Multi-dEadline workflow Planning Algorithm (MEPA) uses a ‘compress-relax’ method. VMs with
best performance are assigned to tasks so that the ‘makespan’ (total execution time) is ‘compressed’ and all
deadlines are met if possible; the assignment over the workflow is then ‘relaxed’ by re-assigning to tasks less
powerful VMs albeit with lower cost while preserving deadline satisfaction. Initially MEPA assigns each
task in the workflow with the best performing VM to guarantee a basic solution; if not all deadlines can be
met this way, then an alternative infrastructure will be needed, or else the QoS requirements of the
application will need to be relaxed. Based on the initial ‘compressed’ assignment, MEPA then calculates the
earliest start time (EST), earliest finish time (EFT) and latest finish time (LFT) for each task based on the
dependencies between tasks and necessary communication costs. MEPA then works backwards from the
final tasks of the workflow to assign the internal deadlines; if the deadline on a task is stricter than the
calculated LFT for that task, then the deadline simply replaces the LFT. If the EFT for a task exceeds its
LFT, then the currently available resources cannot satisfy the time constraints on the workflow. Once the
constraints on a critical path have been determined, it is then possible to determine the best assignment of
VM type to each node on the path, as illustrated by Figure 3-1.

643963– SWITCH Dissemination level: PU

Page 14 of 61

Figure 3-1 Example of deadline-aware planning by DRIP. The blue nodes represent the workflow, with the critical path

outlined. For each parallel group of nodes, the earliest/latest start/finish times can be extracted.

Actual assignment of different kinds of VM to different nodes in the same workflow can be based on brute-
force calculations, or based on the use of heuristics. Convolbo and Chou [2016] propose a heuristic approach
which exploits the parallel properties of the workflow to minimise execution time. Rodriguez and Buyya
[2014] apply particle swarm optimisation, encoding within each particle a task-resource mapping.
Heterogeneous Earliest Finish Time (HEFT) has been proved to perform better than other heuristics in
robustness and schedule length [Canon et al., 2008], and Multi-Objective HEFT extends HEFT to optimise
the trade-off between monetary cost and the makespan of the workflow [Durillo and Prodan, 2014], though
again the communication cost is not addressed. The critical path based iterative heuristic (CPI) [Cai et al.,
2013] and multiple complete critical paths heuristic (CPIS) [Cai et al., 2016] are used in other algorithms for
solving the infrastructure planning problem within the bounds of a single deadline. Based on the calculated
earliest finish time and latest finish time of individual tasks, CPI identifies a complete critical path through
the application workflow from start to finish and assigns the tasks in the critical path to VM services. In
CPIS, a graph labelling method is applied to construct complete critical paths of the kind generated by CPI.

In our case, VM types are assigned to the constructed partial critical path using a genetic algorithm and a
matrix of execution costs per task per VM type (which can be based on historical observation or
extrapolation). Our Genetic Algorithm based Planning Algorithm (GAPA) runs for a set number of
generations to find the best combination of assignments to nodes on a critical path that fulfil all deadlines.
After assignment, the tasks in the critical path are tagged as assigned and the EST, EFT and LFT of the other
tasks in the workflow are updated accordingly. Assignment of the remaining tasks will then continue until all
the tasks in the workflow are assigned. A full description of the algorithms and logic involved can be found
in [Wang et al., 2017a].

3.2 Infrastructure planner evaluation
In principle, IC-PCP can be adapted to plan the kind of service-based workflows for which DRIP is
specialised for by using the sum cost of VMs per time unit as the metric for measuring whether one
assignment is cheaper than the other and forbidding multiple tasks from being assigned to the same VM
instance (deemed necessary to maintain good time-critical performance for application containers). By
changing the calculation on the latest finishing time to take into account internal deadlines, a minimally
modified variant of IC-PCP (which we will refer to as IC-PCP*) can plan for workflows with multiple
deadlines. What we found however was that this approach still incurs unnecessary cost—it is possible to
drive the cost down further than such a minimal adaptation of IC-PCP permits in many cases. In this section,

S	
E	

a1	

a2	

a3	

b1	

b2	

b3	

p1	

p2	

p3	

d	

w	

c	

0	 EFTa1	

LSTa1	 LFTa1	

ESTb1	 EFTb1	
LSTb1	 LFTb1	

Earliest	Start	Time	(EST)	 Earliest	Finish	Time	(EFT)	

Latest	Start	Time	(LST)	 Latest	Finish	Time	(LFT)	

Cri;cal	path:	nodei	(ESTi=LSTi	and	EFTi=LFTi)	

ESTc	 EFTc	
LSTc	 LFTd	

ESTp1	 EFTp1	
LSTp1	 LFTp1	

ESTe	 EFTe	
LSTe	 LFTe	

ESTd	 EFTd	
LSTd	 LFTd	

0	 0	
0	 0	

Deadline=	Td1	
Deadline=	Td2	

Deadline=	Td	

643963– SWITCH Dissemination level: PU

Page 15 of 61

we describe how MEPA compares experimentally against IC-PCP* using a wide range of randomly
generated workflows meant to represent the full variety of application workflows for which DRIP might be
used.

Our implementation of MEPA for DRIP is based on Python 2.7.10. We use NetworkX9 (version 1.10) to
manage the workflow and PyDOT210 (version 1.0.33) to parse the graphs generated by GGen [Cordeiro et
al., 2010]. NetworkX is a powerful Python library for manipulating complex networks. GGen is an open
source random graph generator integrating several different random graph generating algorithms. The
generated random DAGs (Directed Acyclic Graphs) are represented in DOT, which is a plain text graph
description language. DEAP (Distributed Evolutionary Algorithms in Python) [Fortin et al., 2012] is a
framework for experimenting with evolutionary algorithms such as genetic algorithms and particle swarm
optimisation. For our experiments we use DEAP as the underlying framework for implementing GAPA. We
conduct our experiment on the Distributed ASCI Supercomputer 5 (DAS-5)11.

3.2.1 Workload generation
To investigate the behaviour of our algorithm, we use the graph generator GGen to generate random
workflow typologies with different time constraints. Specifically, we apply ‘fan-in/fan-out’ methods to
generate DAGs, which are widely used in random graph generation. This graph generation method takes
three parameters: the number of vertices, the maximum in-degree of each node and the maximum out-degree
of each node. This kind of graph generation method will generate a graph topology with all tasks’ in-degrees
and out-degrees within the chosen upper bounds. If the in-degree and out-degree is set to be one, then the
DAG becomes a sequential graph. In order to test how our solutions perform on different scales of graph, we
set the number of vertices in the workflows to range from 20 to 28. The in-degree and out-degree are used to
generate DAGs with different shapes and we set the maximum in-degree and out-degree to range from 1 to 5
and 1 to 4 respectively.

For each DAG we need to generate an execution profile. The execution profile includes the performance of
tasks on different VM services as well as the communication costs between tasks, which ranges from 1 to
200. In many time-critical applications, the performance of tasks on different services varies for each task.
The response time of tasks may be less than or greater than the communication cost depending on the nature
of computation being performed and the quality of the network. So in order to make the data more realistic,
we should randomly generate response times for tasks running on different VM services that can both exceed
and be significantly less than communication times. For each task we first generate the execution cost of the
task on the ‘best’ VM service, randomly selecting a response time between 1 and half of the communication
cost upper bound. The execution costs of the task on the other ‘lesser’ services are generated iteratively by
increasing the previously generated cost by a randomised proportion. In order to simulate better different
kinds of real world application, our performance generation method ensures that the performance of each
task on different VM types can be substantially larger than the communication cost or much smaller,
ensuring greater diversity in the workflows generated and removing any implicit assumption about the
relative cost of computation versus communication.

The time constraints attached to a workflow are also randomly generated. The number of time constraints are
set with a proportion to the scale of the workflow. Specifically, we set the number of time constraints per
workflow to be 0.1 × 𝑉 , where 𝑉 is the number of tasks in the workflow. We then randomly select
0.1 × 𝑉 tasks from the workflow (with the exception of the last task, which is always the final task in the

workflow), and for each task we attach a random deadline based on the critical path calculation performed
during workflow generation, limiting each deadline’s range based on best and worst performing VM services
so as to ensure no ‘impossible’ (or far too easy) deadlines are set. The final task will always receive a

9 https://networkx.github.io/
10 https://pypi.python.org/pypi/pydot2/1.0.33
11 http://www.cs.vu.nl/das5/

643963– SWITCH Dissemination level: PU

Page 16 of 61

deadline, which will serve as the global deadline for the entire application. All datasets generated for the
experiments in this paper are available online12.

3.2.2 Comparison of path assignment with IC-PCP and GAPA
The partial critical path can be seen as a sequential workflow, each task of which has only one predecessor
and successor except for the entry and exit tasks. We therefore use a set of sequential workflows to test the
performance of GAPA. We set the scale of the sequential workflow ranging from 10 to 100 and the
proportion of deadlines is set to be 0.1. The performance matrix of the tasks in the critical path is generated
randomly as described in Section 5. Considering the performance fluctuation, for the generated performance
profile, we set the task performance fluctuation rate to be 10% and communication fluctuation rate to be
15%. The multiple time constraints of the workflow are generated as described in Section 5. We set the final
generation in GAPA to be equal to the length of the partial critical path. In GAPA, we set the mutation rate
to be 0.05 and population size to be 300. We assume the cloud offers three different types of VM services
and set the price for each service as 5, 2 and 1, which is the same as used in [Abrishami et al., 2013].

In IC-PCP, the whole partial critical path is assigned with the same VM type. Thus, for each workflow, there
are three path assigning choices, assigning all the tasks to 𝑠!, 𝑠! or 𝑠!. We compare the cost with GAPA and
the cost with IC-PCP by assigning all the tasks to the VM service with best performance. We do this because
other VM service selections usually violate one or more deadlines; based on our experiment involving 90
partial critical paths of incrementally increasing length, assigning the second best type of VM leads to a valid
solution only 4 times in 90.

Experimental results are shown in Figure 3-2. The cost of assigning the best performing VM service to all
tasks follows a linear incremental trend because the assigned VMs are of the same type. The result gotten
from GAPA varies a lot because the deadline is randomly generated and the solution obtained from GAPA
may not assign all the tasks to the same VM type at different path lengths. We can see that the assignment
with GAPA appears to perform consistently better than when simply assigning all tasks on the VM with the
best performance. We also find that GAPA can save up to almost two thirds of the IC-PCP cost in this
experiment.

Figure 3-2 Cost comparison of path assignment in IC-PCP and GAPA.

3.2.3 Comparison of IC-PCP, CPI and MEPA with a single deadline
MEPA can plan virtual infrastructures for applications with multiple deadlines, but to compare it with
existing planning approaches that only support a single global deadline, we have conducted experiments on
the dataset described in Section 3.2.1, applying a single deadline and comparing the results of MEPA with
IC-PCP and CPI. Figures 3-2, 3-3 and 3-4 show the planned virtual infrastructure cost of solutions produced
by MEPA, IC-PCP and CPI with test workflows with 16, 32 and 64 tasks respectively, in each case varying
both in-degree and out-degree (identified along the x-axis with the in-degree above the out-degree) to
ascertain how connectivity influences results.

12 https://github.com/WorkflowPlanning/workload

643963– SWITCH Dissemination level: PU

Page 17 of 61

Figure 3-3 Results of 16 nodes with IC-PCP, CPI and MEPA of single deadline.

Figure 3-4 Results of 32 nodes with IC-PCP, CPI and MEPA of single deadline.

Figure 3-5 Results of 64 nodes with IC-PCP, CPI and MEPA of single deadline.

From the figures we can see that MEPA generally leads to less expensive VM assignments than IC-PCP.
MEPA can even save around 66% of cost compared with IC-PCP in some cases. Although from the results
we can see that MEPA and CPI give solutions with similar costs, the time complexity of the CPI is
𝑂(𝑁!𝐷!𝑀) due to the assignment of the path with dynamic programming to find the Pareto assignment [Cai
et al., 2013], making it hard to scale when the deadline of the workflow is very large. 𝑁 represents the
number of nodes. 𝑀 represents the number of services and 𝐷 represents the global deadline. In our solution,

643963– SWITCH Dissemination level: PU

Page 18 of 61

there is no such bottleneck with the scale of the deadline. Moreover, we can see that for a workflow with the
same number of nodes, the cost of MEPA and IC-PCP, CPI are quite close. The reason for this is that when
the in/out degree increase, the DAG will become “wider”, making the length of the critical path become
shorter. For a “loose” deadline, the path assignment of MEPA and IC-PCP can lead to similar solutions,
leading to similar total cost. Moreover, it is not hard to see that when the scale of the workflow increases, the
differentiation between MEPA and IC-PCP will become more significant.

3.2.4 Comparison of IC-PCP* and MEPA with multiple deadlines
In this part we take the workload described in Section 5 and feed the workload into both IC-PCP* (the
minimal modification of IC-PCP for multiple deadline workflows described in Section 3) and MEPA.
Figures 3-6, 3-7 and 3-8 compare the results of IC-PCP* and MEPA with workflows of size of 16, 32 and 64
respectively with different in-degrees and out-degrees (identified along the x-axis with the in-degree above
the out-degree in all figures).

Figure 3-6 Results of 16 nodes with IC-PCP* and MEPA of multiple deadlines.

Figure 3-7 Results of 32 nodes with IC-PCP* and MEPA of multiple deadlines.

643963– SWITCH Dissemination level: PU

Page 19 of 61

Figure 3-8 Results of 64 nodes with IC-PCP* and MEPA of multiple deadlines.

We can see from the results that MEPA is able to give cheaper solutions than IC-PCP*. When the scale of
the workflow increases, the differentiation between the results of MEPA and IC-PCP* will become more
significant. With the increase of in/out degree, the result of MEPA and IC-PCP* tend to become similar, but
the similarity is reached for larger in/out degree ratios when the number of tasks in the workflow increases.
This is because the length of the partial critical path will become shorter when the in/out degree increases. So
the internal deadlines in each partial critical path can be less, making the planned results more similar.

The infrastructure planning problem has not been widely discussed from the networking perspective
however, so we now intend to study SDN technologies to better enable network-aware workflow planning.

3.3 QoS-aware virtual SDN network planning review
By decoupling the control plane from the data plane, Software-Defined Networking (SDN) technologies
allow administrators or applications to manipulate the underlying network behaviour via open interfaces
[Kreutz et al., 2015; Ongaro et al., 2015]. SDN-based standards, e.g. Network Service Interface (NSI) and
Openflow, have shown great impact on dynamic provisioning and reconfiguration in lightpaths and data
centre networks in physical infrastructures [Kreutz et al., 2015]. In cloud environments, SDN-based virtual
switches (e.g. implemented using Open vSwitch13) can be used together with networked virtual machines
(VMs) to allow applications to dynamically adjust network flows via open interfaces in order to maintain the
system-level performance [Jeong and Figueiredo, 2016].

At an abstract level, designing a topology of virtual network devices and placing suitable number of
controllers are two key issues of designing a SDN network in a Cloud environment. When an application is
distributed and has a high quality requirement such as on communication latency, designing a suitable SDN
network can be difficult. Mapping application-level quality constraints onto network-level properties, e.g.
topology, is not straightforward, in particular where the application has different requirements to be
considered. The design of the virtual network should also take into account non-functional requirements,
such as cost and reliability. To make the virtual network software-definable, one or more controllers are
needed, and they can reside in the same VM with the virtual network devices or on a separate VM.
Unnecessarily high numbers of controllers can not only make the resource cost high, but also increase the
control complexity. Moreover, the placement of the controllers can also influence the control latency
between controller and devices; when the application has critical time requirements, limiting such latency
can also be crucial.

In recent years, network topology optimisation and SDN controller placement have attracted lots of research
attention. The problem of network topology customisation is often studied using optimisation approaches.
Gódor et al. [2005] proposed a heuristic algorithm which combines clustering and local optimisation

13 http://openvswitch.org/

643963– SWITCH Dissemination level: PU

Page 20 of 61

operators to optimise the cost of hierarchical network planning. The costs of the network are aggregated
together from level to level with the degree constraints. Rosenberg [2005] tried to design a network topology
with the minimum number of links under the constraints of network diameter, degree and survivability,
conducting theoretical analysis on the problem and proposing a method with a mathematical model.
However, detailed information about the algorithm is not given. For the DRIP planner, we consider similar
QoS requirements as Rosenberg and propose a meta-heuristic approach. Kamiyama et al. [2009] targets at
designing a network topology which can guarantee the connectivity and total link length. As the search space
enumerating all the possibilities of links is too large, they applied binary partitioning and introduced extra
constraints to reduce the search space. In [Tuba, 2010] the maximum entropy method (MEM) is applied to
solve the problem of network design with the objective to minimise the cost under the constraint of link
capacity and latency. Fencl et al. [2011], to solve the problem of network topology design with the objective
of fault tolerance and capacity of traffic and delays, apply a genetic algorithm. In summary, only Rosenberg
considered the QoS of network reliability and network diameter constraints and presented theoretical
analysis when customising network topology. However, a detailed description of the solution is not
given. The controller placement problem was first addressed in [Heller et al., 2012]. The placement metrics
average-case latency and worst case latency are still widely used in current studies. Pareto-based Optimal
COntroller placement(POCO) [Lange et al., 2015; Hock et al., 2014] is a framework for Pareto optimal
controller placement in terms of different performance metrics. The controller-to-switch and controller-to-
controller latency are considered to measure the network resilience. [Cheng et al., 2015] proposed three
heuristic algorithms to solve the problem of QoS-guaranteed controller placement. The algorithms are more
concerned with how to partition the network from the controller viewpoint. However, these existing works
assume the number of controllers is assumed to be given. In the SDN network planning problem, this
number is not known before. So we propose a solution that can determine the placement of controllers and
the number of controllers needed.

From the existing work, we can see most of the topology customisation work study physical networks,
without considering the SDN aspects; and the SDN placement studies mainly focus on the pre-defined
physical networks. In cloud environments, combing these two perspectives are clearly needed, so here we
formulate this problem as the virtual SDN network planning problem, and propose a Topology-Controller
planner (TCPlanner) to solve the problem [Wang et al., 2017b], which can be seen as an extension of the
MEPA planner described previously.

3.4 SDN network planning problem specification
The virtual SDN network planning problem is to customise a network topology and place the controllers that
can meet the given QoS requirements. As discussed above, the VMs provided by the cloud can act as the
switches. Network topology customisation determines how these virtual switches are connected. We assume
that the users specify the number of virtual network devices (routers or switches) as 𝑁 and QoS requirements
(network diameter and reliability). The network diameter 𝑑 is the communication cost of the longest path
between all the pairs in the graph. It can reflect the worst end-to-end latency in the network [Rosenberg,
2005]. Therefore, we consider the network diameter specified by the user as the one of the QoS
requirements. Due to the dynamics of cloud, the virtual links between VMs can fail or degrade occasionally
[Hwang et al., 2016]. Therefore, the reliability in the virtual network topology customisation is another
important issue which should be considered. In this paper we use single arc survivability to represent the
reliability of the network. Single arc survivability means that when a single link in the network topology
fails, the network is still connected. There are limited number of ports in network devices even though it is
virtual instead of physical. The cloud provider may also limit the number of links that a VM is able to
connect due to the limitations of physical infrastructures. More specifically, ∆ is the maximum number of
links from any given VM. The network topology customisation problem is to define a network topology that
has single-arc survival with network diameter no greater than d and node degree no larger than ∆. The
overall objective of the network topology customisation is to design a network topology with the minimum
number of network links within the constraints described above.

643963– SWITCH Dissemination level: PU

Page 21 of 61

The controller placement problem is to determine the number of controllers and places where controllers
should be deployed. We assume that the controllers can manage the same number of virtual switches and the
controllers can be placed in the same place as the virtual switch. The controller-to-controller and controller-
to-switch communication are also enabled through the virtual network links in the network topology
planning phase so that no extra links need to be re-planned. The controller-to-controller latency and
controller-to-switch latency are two typical QoS requirements when placing controllers [Shah et al., 2013].
In this paper we use 𝜋!

!"#$"%&'() and 𝜋!
!"#$"%&'() to represent the maximum permitted controller-to-

controller latency and controller-to-switch latency. We 𝜋!
!"#$!%&'() to represent the average controller-to-

switch latency. 𝜋!
!"#$!%&'() is quite crucial to SDN because the controller needs to communicate frequently

with the switches. Thus, in this paper we try to minimise the number of controllers and 𝜋!
!"#$!%&'() within

the constraints of 𝜋!
!"#$"%&'() and 𝜋!

!"#$"%&'().

An approach called Topology-Controller planner (TCPlanner) is proposed to solve the virtual SDN network
planning problem. The TCPlanner first customises the network topology to meet the high level requirements,
which can be given by the network developer or applications, and then places the optimal number of
controllers within the planned topology. TCPlanner plans a topology to connect virtual network devices
based on network diameter and reliability. We use 𝑑′ to represent the maximum end-to-end latency tolerable
for users. Thus, to guarantee the 𝑑′ and 𝜋!

!"#$"%&'(), we set 𝑑 = 𝑚𝑎𝑥 𝑑′,𝜋!
!"#$"%&'() .

Such a problem can be viewed as a transformation of the Minimum-Cardinality-Bounded-Diameter (MCBD)
Edge Addition Problem which has been proved to be NP-hard [Li et al., 1992; Abd-El-Barr, 2009].
Theoretically, there exists a brute-force algorithm that solves the problem by iterating through all feasible
solutions. In Cloud, the virtual links can be planned between any pair in the virtual network. Thus, there exist
(𝑁 × (𝑁 − 1))/2 links, so the scale of searching space will be 2! × (! !!) . This is possible for small-scale
graphs, but becomes computationally prohibitive when 𝑁 is very large. A meta-heuristic approach based on
evolutionary algorithms is adopted in TCPlanner, because evolutionary algorithms have been demonstrated
as a feasible solution for several similar problems [Tsai and Rodriguez, 2014].

We model the network connectivity using a communication matrix and assume the links between nodes are
not directed; the communication matrix is thus symmetric. We encode a solution to a chromosome with
length of (𝑁 × (𝑁 − 1))/2. Each element in the chromosome is 1 or 0, which indicates whether a link
exists or not between vertices. Correspondingly we also design a decoding algorithm to decode the
chromosome as a graph. The initial population can be seen as the ‘seed’ of the initial state which can have
great effect on the performance of the genetic algorithm. Usually the initial population can be heuristically
crafted or randomly generated. It is difficult to follow certain heuristics to create the initial population, so all
the individuals in it are randomly generated. The assignment of each position has equal probability.

Due to the complex various situations in which the constraints described above can be violated, we add a
penalty factor for each violation and aggregate them with the number of links into the fitness function. As
the objective is to minimise the number of links, we use the reciprocal of the sum of the link number and
penalties as the fitness function which is calculated as:

1 𝐿𝑖𝑛𝑘𝑁𝑢𝑚 + 𝑥! × 𝑝𝑒𝑛𝑎𝑙𝑡𝑦!
!

!!!

𝑥! = 0 𝑇ℎ𝑒 𝑖!! 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
 1 𝑇ℎ𝑒 𝑖!! 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

𝐿𝑖𝑛𝑘𝑁𝑢𝑚 represents the number of links in the planned network topology. 𝑝𝑒𝑛𝑎𝑙𝑡𝑦! represents the extent of
the violation of the 𝑖!! constraint. The penalties above are to avoid unfeasible solutions like unconnected
graphs or graphs that violate the specified constraints. In our scenario, there are four possible situations
where the constraints can be violated: diameter violation, connectivity violation, degree violation and
survivability violation.

643963– SWITCH Dissemination level: PU

Page 22 of 61

We use genetic operators crossover and mutation to produce new generations of individuals and introduce
diversity. We set the probability of crossover between two parents as a static value 𝑝! for each generation so
that in each iteration new chromosomes will be produced by intersecting the parent’s chromosomes with a
certain probability 𝑝! . After the off-springs are generated, 𝑝!× 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 individuals are mutated by
switching certain places in their chromosomes from 1 to 0 or 0 to 1. 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 refers to the population size. 𝑝!
represents the probability of mutation of individuals. Then the next generation is selected with the
individuals of the best fitness value and the population remains the same size as last generation. After
planning the topology, TCPlanner will determine the number and placement location of the SDN controllers.
The objective is to minimise the number of controllers and average controller-to-switch latency under the
constraints of the capacity of controllers and maximum latency of controller-to-switch [Shah et al., 2013].

In TCPlanner, we sort the degree of the nodes in the planned network topology in descending order and first
choose the vertex 𝑣 with the maximum degree as the centre of the first cluster. The higher degree a vertex
has, the more chances the average latency can be reduced when looking at all its neighbours one step further
away. At each level neighbours of the centre node, we first choose the node with the minimum degree so that
it minimises the interference on other clusters. Vertex 𝑣 tries to ‘absorb’ its neighbours in this way until the
controller capacity or the maximum controller-to-switch latency is violated. Such process will continue until
all the nodes are assigned to a cluster. In each cluster, its centre node is the place where controllers should be
placed. The number of controllers is equal to the number of clusters. The results of this process can then be
used by a provisioning service to actually place SDN controllers and configure the surrounding network
topology.

3.5 Evaluation
To test the effectiveness of TCPlanner, we compared it with a K-Medoids based solution as the baseline
[Park and Jun, 2009]. The K-Medoids algorithm is intended to classify a data set into several clusters based
on the node distance. The basic process of K-Medoids is to randomly initialise K centres of clusters and add
nodes to the clusters based on the distance between the centre node and non-clustered node. Then the
algorithm will try to calculate some centres to reduce the inter-cluster and intra-cluster distance. The
algorithm will converge when no better centres can be found. As the K-Medoids algorithm needs to specify
the number of clusters before the execution of the algorithm, we use the square root of the number of nodes
as the initial number of clusters. When a cluster in the solution given by K-Medoids algorithm exceeds the
capacity of the controller or the maximum controller-to-switch latency is violated, we increase the number of
clusters by 1. We conduct simulated experiments on different scales of networks to test the effectiveness of
the proposed solution. Our solution is implemented in Python and depends on NetworkX and DEAP, just as
for our earlier experiments in Section 3.2. We set the number of network devices N ranging from 6 to 25.
The diameter of the network is set as 𝑁 . The maximum degree of the network devices is 𝑑 + 1. 𝑑
represents the diameter of the network. We set the maximum generation number of the genetic algorithm to
be 250 to ensure that a feasible solution can be found.

From Figure 3-9 we can see that the number of links needed to guarantee the QoS increases with the number
of network devices roughly linearly. In order to evaluate the performance of TCPlanner, we design a greedy
algorithm which utilises all the degrees of each port. Therefore, the number of links that can meet the QoS
requirements reaches 𝑁 × ∆. From the result we can see that TCPlanner outperforms the greedy solution.

643963– SWITCH Dissemination level: PU

Page 23 of 61

Figure 3-9 Number of links for a network topology with certain QoS requirements.

 We take the network topology generated from the data plane planning phase and compare the results of K-
Medoids and TCPlanner from the number of controllers and average controller-to-switch latency. The results
are shown in Figures 3-10 and 3-11.

Figure 3-10 Number of controllers deployed by K-Medoids and TCPlanner.

643963– SWITCH Dissemination level: PU

Page 24 of 61

Figure 3-11 Average controller-to-switch latency for K-Medoids and TCPlanner.

From the results we can see that the K-Medoids based solution needs more controllers than TCPlanner but
can reduce the average latency. The result is reasonable because the K-Medoids based solution tries to
cluster the graph to minimise the intra-class distance and inter-class distance. With the increase of the
number of network devices, the number of needed controllers can be reduced dramatically. When the scale
of the topology reaches 25, TCPlanner can deploy three fewer controllers than the K-Medoids-based
solution.

We only consider the latency constraints in the current prototype; other QoS attributes such as bandwidth can
also have great impact on the performance of the network. Future work should thus include more network
QoS constraints in the planning process. Moreover, the characteristics of application traffic patterns and the
dynamic QoS control of SDN network can also be investigated in the planning algorithm, which indicates
further development possibilities for the DRIP planner beyond the final SWITCH public release.

643963– SWITCH Dissemination level: PU

Page 25 of 61

4 Dynamic cloud performance information
Over the last decade, the usage of cloud computing has become increasingly popular. With the increasing
amount of available instances and cloud providers it is becoming increasingly difficult for application
developers to select the right cloud provider for their application. Most cloud providers provide static
information (e.g. CPU cores, memory size, disk size, and disk type) of different kinds of virtual machines
(VMs). However, when an application developer wants to deploy a mission-critical application in the cloud,
the static information provided by the cloud provider is often insufficient, because static information does
not take into account the hardware and software that is being used or the policy that has been applied by the
cloud provider. Therefore, more precise information about cloud resource types and provisioning constraints
is crucial to successfully deploy an application within the cloud [Zhao et al., 2015; Zhao et al., 2016]. Over
the last few years many automated benchmark tools are proposed in literature, all of which aim to help a
single user to benchmark multiple instances and/or providers, so that the user is able to select the right
instance according to their requirements. However, the performance of those instances may be different each
time it is measured [Iosup et al., 2011; Leitner and Cito, 2016]. Thus, it would be helpful if users can obtain
statistical information about the consistency and stability of cloud resources. For the DRIP performance
modeller component, we need to look at how to test the performance consistency and stability of provisioned
cloud resources. The systematic collection and sharing of such information will allow the DRIP planner to
select the most suitable resources for mission-critical applications.

The research and development results of this section has been published in the IEEE Networking,
Architecture and Storage (NAS) [Elzinga et al., 2017].

4.1 State of the art
Based on the challenges presented, we identify custom benchmarking as an important functional requirement
in SWITCH. Implementing new and custom benchmarks is an important feature for a cloud performance
evaluation tool. By using a well-defined way of specifying which application needs to be installed,
configured and executed, it should be easy to implement any type of application to benchmark it on different
cloud resources/providers. The requirements for selecting an automatic benchmark tool for DRIP are:

1. Public availability: most importantly, the application must be publicly available for usage.
2. Open-source: in order to make the community contribute to the tool as well, the application must be

open-source. When applications are open-source and downloadable via for example GitHub, it helps to
get the community involved with the project.

3. Maintainability: an important aspect of the application is that it must be maintained frequently. The
cloud evolves rapidly and new features are presented regularly and therefore it is important that the
automated benchmark tools follow the new trends of the Cloud and keep helping customers to select the
right cloud resources.

4. Support for IaaS providers: in many cases users will compare multiple providers to select the best
offer according to their wishes. Therefore, the application must support a large amount of public and
private IaaS providers.

Over the last few years there are several automated cloud benchmarking tools proposed in literature. Chhetri
et al. [2013] proposed Smart CloudBench, which is a platform that automates the performance benchmarking
of cloud infrastructure, helping potential consumers quickly identify the cloud providers that can deliver the
most appropriate price/performance levels to meet their specific requirements. They looked at benchmarking
from the consumer’s perspective and focused on benchmarking the entire application stack instead of
looking at individual components. Cunha et al. [2017] proposed an automatic benchmark tool called the
Cloud Crawler. The tool helps users to describe and automatically execute application performance test
inside the cloud. New benchmarks are defined in a declarative domain-specific language called Crawl, which
is based on YAML. Scheuner et al. [2014] presented Cloud WorkBench (CWB). CWB is designed and
implemented to leverage the notion of Infrastructure as Code (IaC) for cloud benchmarking, and is used to

643963– SWITCH Dissemination level: PU

Page 26 of 61

automate the benchmarking lifecycle from the definition to the execution of benchmarks. CWB uses
Vagrant14 to provision virtual resources and Opscode Chef15 to install and configure the benchmark tools.
CWB can run benchmarks directly or schedule benchmarks within various public Infrastructure as a Service
(IaaS) clouds. Silva et al. [2013] presented CloudBench. CloudBench is an open-source framework that
automates IaaS clouds to run controlled experiments, where complex applications are automatically
deployed. The authors demonstrated CloudBench main characteristic through the evaluation of an
OpenStack installation, including experiments with approximately 1200 simultaneous VMs at an arrival rate
of up to 400 VMs/hour.

Table 4-1 compares the most important requirements of the tools proposed in literature described in the last
section. None of the tools proposed in literature met our requirements, therefore, we decided to create our
own tool for use in DRIP. We identify a number of technical gaps that we try to bridge in this research:

1. Ability to add providers: none of the tools have the ability to easily add providers to the tool. For
example, the Cloud WorkBench uses Vagrant, which works well for the platforms Vagrant supports.
However, when a provider is not supported by Vagrant one has to find an other way to add that provider.
It would be helpful if a new provider could be implemented regardless of the type of software used to do
so. Therefore, a well defined framework will be of great use to define a standard way of writing such a
piece of code that controls the orchestration VMs.

2. Possibility to add custom benchmarks: most of the tools proposed in literature do not provide a way to
add custom benchmarks in an easy way. Therefore, it’s important that the installation, configuration and
the benchmarking process are defined in a powerful way and in a common language (e.g. JSON, YAML)
so that it’s easy for users to benchmark their scenario.

Table 4-1 Comparison of proposed automated benchmark tools and our requirements.

4.2 Cloud performance collector
The basic steps involved in the establishment of a testing framework for cloud resources are shown by the
sequence diagram in Figure 4-1. In the first step, the experimenter (user) runs or schedules one or more
benchmark scenarios. When a scenario is executed, the CPC will first provision the necessary resource via
the cloud Application Programming Interface (API). As soon as the VM instance is reachable, the software
can be installed and configured depending on the layout of the scenario. After the successful
installation/configuration of the software, the benchmarks can be executed. When a benchmark is finished,
the results will be collected by the CPC. After all benchmarks are finished and all the results are collected,
the CPC will release the VM to keep the time the VM is used to a minimum. To make it easy for developers
to implement new features, the design includes three modules: the provider module, the ‘deploy and run’
module, and the result module. The provider module makes it possible to provision and release VMs when
the experiments are finished. The ‘deploy and run’ module takes care of installing, configuring, and
executing the benchmarks. The results module parses all the useful information out of the output of each
benchmark application.

14 http//www.vagrantup.com/
15 http://www.getchef.com/

643963– SWITCH Dissemination level: PU

Page 27 of 61

Figure 4-1 The CPC benchmark execution process.

To demonstrate the benefit of the design, we build a prototype to do experiments with. The prototype is a
command-line interface (CLI) tool written in bash. During the experiments ExoGENI will be used as
provider, therefore the provider module will make use of the python script omni16 to communicate with the
API of ExoGENI. The deploy and run module which takes care of installing, configuring and executing the
benchmarks will be done via Ansible17. The scheduling of benchmarks is done via Linux cronjobs. The
results module consists out of small bash scripts to filter the output.

4.3 Performance data collection experiments
In order to illustrate the benefits of the CPC we conduct several experiments using the ExoGENI test-bed.
ExoGENI 18 is a distributed networked infrastructure-as-a-service (NIaaS) platform geared towards
experimentation and computational tasks. During these experiments we aim to answer these questions:

1. Performance consistency: will VM instances with the same specifications perform consistently
each time they are provisioned?

2. Performance stability: will the same VM instance with the same workload maintain the same
performance levels over time?

The goal of the first question is, to measure if there is a difference between different provisioned VMs, using
the same specifications and image from the same provider. The goal of the second question is, to find out
whether a VM instance once provisioned performs the same over a longer period of time. By comparing the
results of the first question with the results of the second question, we can analyse whether the performance
variation is depending on the time of the day or the physical location of the VM instance or both. Moreover,
we measure the performance of a real-world application, so we can demonstrate how the CPC can test any
given application component. During each experiment, we will run the tool 24 times, scheduled each hour.

16 http://trac.gpolab.bbn.com/gcf/wiki/Omni
17 https://www.ansible.com/
18 http://www.exogeni.net/

643963– SWITCH Dissemination level: PU

Page 28 of 61

4.3.1 Experimental setup
All experiments were conducted on the ExoGENI test-bed using the racks of: The National ICT Australia
(NICTA), Raytheon BBN Technologies (BBN), and the University of Amsterdam (UvA). The experiments
were conducted on the "current types" offered by ExoGENI19. During the experiments, we used three
different instance types: XOMedium, XOLarge, and XOXLarge. Table 4-2 shows the specification of the
current resource types offered by ExoGENI. All instances are using the same Ubuntu 14.04 image.

Table 4-2 Resource types offered by ExoGENI.

During the experiments four applications were used, three benchmark tools, and a real-world application.
sysbench20 is a modular, cross-platform and multi-threaded benchmark tool to quickly get an impression
about system performance. During our experiments, we use sysbench to benchmark the CPU by verifying
prime numbers of 100,000 natural numbers. sysbench measures the time it takes to calculate those number in
seconds. The STREAM21 benchmark is used to measure the performance of the main memory. STREAM is a
benchmark which is designed to measure sustainable memory bandwidth using four vector-based operations:
COPY (𝑎 = 𝑏), SCALE (𝑎 = 𝑞 × 𝑏), SUM (𝑎 = 𝑏 + 𝑐), and TRIAD (𝑎 = 𝑏 + 𝑞 × 𝑐). During our
experiments we chose to use the TRIAD operation since it is the most complex operation with STREAM
measuring the throughput in MB/s. IOzone22 is a benchmark used to measure the read and write performance
of the disk. To reduce the time it takes to complete both the read and write process, we make use of a file
size of 2GB with a record size of 64Kb. IOzone measures the throughput in MB/s. To demonstrate that any
type of application could be tested, we will use the application Montage23 inside a Docker container.
Montage is a toolkit for assembling Flexible Image Transport System (FITS) images into custom mosaics
used in a variety of research contexts, notable for its flexibility and parallelisability in Grid and Cloud
contexts. We will measure the time it takes for the application to create the image in seconds.

4.3.2 Experiment 1: Performance Consistency
In this experiment, we investigated if VM instances with the same specifications from the same provider
performs similarly. During this experiment we used a different VM instance every two measurements. By
benchmarking the same instance twice before a new one is used, we can see if the variation is caused by the
fact that the instance is placed on a different physical server or by a lack of performance isolation on a single
physical server (noisy neighbours). Figure 4-2 shows the results of running the sysbench CPU benchmark.

19 https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start
20 https://github.com/akopytov/sysbench
21 http://www.cs.virginia.edu/stream/stream2
22 http://www.iozone.org/
23 http://montage.ipac.caltech.edu/

643963– SWITCH Dissemination level: PU

Page 29 of 61

Figure 4-2 Variation in performance of different VM instances running sysbench.

The instances running on the rack of NICTA perform quite stably and have little to no performance variation
when a different instances is used. In contrast to the instances running on the rack of NICTA, we observed
large performance variations when a new instance is provisioned on the rack of BBN. However, when we
run the same benchmark for the second time on the same VM instance, we see a similar level of
performance. It is likely that the instance is placed on a different physical server within the rack. After ten
measurements it was not possible to provision the BBN XL instances again. Therefore, during this
experiment the data available of the BBN XL instance is limited. Similar problems occurred on provisioning
instances on the rack of the UvA. Therefore, we decided to not include the instance of the UvA during this
experiment. Figure 4-3 shows the memory throughput measured by STREAM.

Figure 4-3 Variation in performance of different VM instances running STREAM.

In general, the results of the RAM benchmark shows the same behaviour compared to the results of the CPU
benchmark. The Large and XL instance of NICTA show slightly decrease in performance in some
measurements. The instance on BBN shows the similar pattern compared to the CPU benchmark. Interesting
is that during a measurement during which the memory throughput is higher, the time it takes for sysbench to
finish is longer. For example, the first four measurements on both the NICTA Medium and the BBN
Medium instance show more or less the same result. During the fifth measurement of the BBN Medium
instance, we see an increase in execution time during the CPU benchmark but also an increase in memory
throughput. The performance disk I/O has the tendency to vary more compared to CPU and memory, during
this experiment we can see this behaviour on the instances of NICTA as well. However, we did not see this

643963– SWITCH Dissemination level: PU

Page 30 of 61

behaviour on the instances of BBN were the CPU and memory in some cases vary more compared to the
disk I/O. Figure 4-4 shows the read performance of the different instances, all instances perform similar,
whereas the instances of BBN perform slightly higher.

 Figure 4-4 Variation in performance of different VM instances running IOzone (to read).

The write performance is shown in Figure 4-5.

 Figure 4-5: Variation in performance of different VM instances running IOzone (to write).

Compared to the read performance, the larger instance tends to perform a little bit better compared to the
smaller instances. Interesting is that the BBN Medium instance shows a big variation in performance.

4.3.3 Experiment 2: Performance Stability
During the second experiment, we investigated if the same VM instance with the same workload provide a
stable level of performance over time. For this experiment we provisioned a VM instance for each
provider/resource type and we will use that same VM instance for all measurements. Figure 4-6 shows the
results of running the sysbench CPU benchmark.

643963– SWITCH Dissemination level: PU

Page 31 of 61

 Figure 4-6 Variation in performance on the same VM instance running sysbench.

All the measured instances show almost no variance in performance. The Large instance of all three racks
perform on the same level. However, the Medium and XL instance of BBN performed less compared to the
same instance of the other racks. Figure 4-7 the variety in performance of STREAM.

Figure 4-7 Variation in performance on the same VM instance running STREAM.

Whereas, the results CPU shows almost no variation in performance, the results of the memory show some
small differences. The BBN Large instance shows significant difference and the NICTA Large and NICTA
XL show some difference as well. The results of the disk I/O are similar to the first experiment. Still there is
a lot of performance variation measured on all instances. However, the performance variation on some
instances seem to be less compared to the first experiment. Figure 4-8 shows the read performance of the
different instances.

643963– SWITCH Dissemination level: PU

Page 32 of 61

Figure 4-8 Variation in performance on the same VM instance running IOzone (to read).

In almost all cases (except for UvA Large) the instance running on the UvA have the highest performance
followed by BBN. A possible explanation for the results of the UvA Large instance is the fact that the UvA
rack is heavily used (which resulted in provisioning problems during the first experiment). Figure 4-9 shows
the write performance of the different instances.

Figure 4-9 Variation in performance on the same VM instance running IOzone (to write).

In general, the larger instance tends to perform a little bit better compared to the smaller ones. Just like the
first experiment, the write throughput of the BBN Medium is much higher compared to the write throughput
of the other instances. However, this time the variation is much lower than during the first experiment.

4.3.4 Experiment 3: Performance variation of a real-world application
Figure 4-10 shows results for the Montage application running inside a Docker container.

643963– SWITCH Dissemination level: PU

Page 33 of 61

Figure 4-10 Results of running Montage inside a Docker container.

During this experiment, we used the same VM instance that is used during the second experiments. Similar
to the results of the other experiments, during this experiment we can see that all instances show little
performance variation over time. Interesting is that all medium instances are performing similar or better
compared to their same provider counterpart.

4.4 Discussion
During our experiments, we have looked at performance consistency and have seen that when a new VM
instance is provisioned the performance can be similar but in some cases can differ. When we looked at
performance stability, we have seen that with regards to CPU and memory the performance provided by all
tested providers is constant over time. With regards to the variation of disk performance we have seen that
there is much more variation during both experiments. We have seen that the read performance of the UvA
Large instance was significantly lower compared to all instances, a possible explanation being the fact that
the UvA rack is heavily used. However, to really understand why the performance was significantly lower
more testing is needed to identify if it has something to do with the VM type or the physical server the VM is
hosted on. During our experiments, we also looked at the performance variation of a real-world application.
The Montage application read a large amount of images from disk and created one big image out of those
images. Therefore, read performance is an important aspect of the application. When we compare the results
of this experiment with the result of disk read performance of the second experiments, we can see that
Figures 4-8 and 4-10 have a lot of similarities. Both figures show that the UvA is the faster except for the
UvA Large instance. Both figures show that the Large instance of each rack is performing less compared the
Medium and XL instance of that rack. Hence, we can conclude that it should be possible to use synthetic
benchmarks to show which instance is best for a specific application. However, it is important to understand
the most important components of the application to compare its results to various results of synthetic
benchmarks.

These results demonstrate the feasibility of collecting some basic performance information for use in systems
such as DRIP, though it should be noted that the kind of characteristics that can be accurately gathered are
limited by the type of application component for which the best VM is to be selected (dependence on
processing, on disk or network I/O, general variability of performance, etc.). Nevertheless, such a
performance modelling tool can be used to gather data for the DRIP knowledge base, which can then be
accessed by the planner, provisioner and in principle any other component that may benefit from the
information therein.

643963– SWITCH Dissemination level: PU

Page 34 of 61

5 Inter-locale virtual cloud provisioning
In DRIP we have designed and implement a flexible inter-locale Cloud engine for quality critical
applications to help satisfy time-critical requirements for highly distributed big data processing. This cloud
engine is able to provision a networked infrastructure, recover from sudden failures quickly, and scale across
data centres or Clouds automatically. The key technologies used include transparent network connection and
standardised multi-level infrastructure description. This work was originally presented in D3.2, but
additional details about how the TOSCA-based plans generated by DRIP are handled are provided here, as
well as a report on further experiments conducted.

The research and development results of this section have been published in IEEE International Symposium
on Real time distributed computing (ISORC) [Zhou et al., 2016a], IEEE Cloud [Zhou et al., 2016b], and
workshop IT4RIs in IEEE RTSS [Zhou et al., 2016c]

5.1 Challenges and gaps
According to the current state of the Cloud in industry, we infer the following challenges and gaps when
migrating this kind of quality critical application onto Cloud, focusing mainly on infrastructure provisioning:

1. Networked infrastructure. The applications workflow becomes more complex with a lot of
components that need to communicate with each other. Separated instances cannot complete the whole
job. For instance, the components in different parts of a big data infrastructure need to communicate with
each other and transfer data. The virtual infrastructure must therefore realise a particular network
topology. Most current cloud providers cannot support this however; for example, Amazon EC2 can
only allow users to describe private subnets, making it hard to build a complete topology.

2. Nearly real-time constraints. Nearly real-time applications require that most task deadlines be met over
the lifetime of the application. Missing one deadline does not lead to immediate failure of the
application, but continued failure to meet deadlines is unacceptable. We identify two particular types of
nearly real-time constraints in this section. The first type is of static constraints on network transmission
time as data is processed, which restrict task scheduling before provisioning. The second type is of
runtime constraints restricting the time the application has to recover from sudden failures—because the
application is running all the time and some failures cannot be avoided, especially where the Cloud is
remote and not totally reliable. Currently developers generally put all components in one data centre. If
that data centre is not accessible, then we have to re-provision the whole infrastructure within another
data centre, which is a costly operation.

3. Geography. Not all the components of an application are on the cloud. Data collectors such as (for
example) cameras providing video of a live event are not on the Cloud themselves, but provide data to be
ingested into the Cloud. The geographic location of any virtual infrastructure therefore has to be
considered to satisfy the nearly real-time constraints on data delivery [Alamri et al., 2013].

4. Auto provisioning and federated cloud. Since these applications are complex, we need a way to
provision the whole infrastructure and deploy applications automatically. Currently, some tools can only
provision automatically at instance level, for example Chef24. On the other hand, we may need more
resources from other Clouds to provision a large scale infrastructure [Zhang et al., 2016]. It is a problem
to combine these resources across multiple locales however.

5.2 Methodology and use
To address the challenges of SWITCH, we designed and developed a Cloud engine to set up the virtual
Cloud. This virtual Cloud is an encapsulation of different data centres or other Clouds. With the help of this
Cloud engine, the Cloud user can provision networked virtual infrastructure and manage all virtual resources
together on the one virtual Cloud. This engine relies on transparent network connection methods and

24 https://www.chef.io/chef/

643963– SWITCH Dissemination level: PU

Page 35 of 61

standardised multi-level infrastructure descriptions. The engine applies two different methods to settle the
problem of connectivity between partitioned topologies in different locales, which is a key step for
provisioning across multiple data centres or Clouds. These two connection methods have also been discussed
in detail in D3.2 and [Zhou et al., 2016].

Figure 5-1 illustrates the first connection method. It shows how one packet gets through the public network
between two sub-topologies. It is mainly based on NAT. The proxy node works as a mirror of the node in
another topology and is not made visible to the Cloud user. At the same time, VM1 and VM2 can
communicate via private IP addresses, which are selected by the application developer.

Figure 5-1 Connection technique with proxy nodes.

The second method to connect these sub-topologies is using IP tunnelling. This method is shown in Figure 5-
2. With the IP tunnelling technique, the original packet, which uses the internal private network addresses
provided by the application developer, can be wrapped in another packet which allows the original packet to
be delivered through the public network.

Figure 5-2 Connection method with IP tunnelling.

The advantage of the second method is that it does not add the extra overhead of proxy nodes for every link
that crosses sub-topologies, in contrast with the first method. However, only some versions of Linux support
IP tunnelling by default. If the customer adopts (for example) Windows for the virtual machines to run on,
then the second method cannot be easily made to work. Another disadvantage of the second method is that
we need to re-configure the original nodes provided by the developer. It is therefore not totally transparent
when compared with the proxy node method. We therefore adopt both methods and choose which one to
apply depending on the specific situation. Meanwhile, we have tested to confirm that the network
performance will not significantly drop with use of either of these methods.

Another key part of our solution lies with infrastructure description. The infrastructure specification used by
our engine adopts the TOSCA standard, expressed in YAML. The multi-level description is used to
provision infrastructure provided by different data centres or even different Clouds. Figure 5-3 shows an
example of the files used.

643963– SWITCH Dissemination level: PU

Page 36 of 61

Figure 5-3 Example of an infrastructure description (zh_all.yml on the left, ec2_zh_a.yml on the right).

In Figure 5-3 the file zh_all.yml provides a top-level infrastructure description. It specifies different sub-
topologies and their providers. The field ‘topologies’ defines the whole topology. The subfield ‘topology’ of
this field defines the name of the sub-topology. It is also the name of the low-level description file, which
describes the infrastructure in more detail. The user should also define which cloud provider this sub-
topology belongs to. The field ‘connections’ describes how the sub-topologies are connected. Besides these,
the fields ‘publicKeyPath’ and ‘userName’ are important to set up the virtual Cloud. The user generates a
RSA key pair. He keeps the private key and publishes the public key within the field ‘publicKeyPath’. After
the virtual resources are provisioned, the user can then login to every instance with the corresponding private
key and the user name defined in the configuration file. Otherwise, the user would need different private
keys to access resources from different cloud providers. The default user-name would also be different.

File ec2_zh_a.yml is an example of the low-level infrastructure description. The infrastructure resources
described in one file are all in one data centre. The field ‘components’ describes the computing resources of
VM nodes. The fields ‘subnets’ and ‘connections’ describe the network resources. Among them, the field
“subnets” is used to describe several nodes in one subnet. The field ‘connections’ defines a specific link
between two nodes. This field makes it easy to describe the network topology. It is worth mentioning that the
user can specify the installation file and installation script path in each node description. With these fields,
the applications developed by developers can be automatically deployed after provisioning.

643963– SWITCH Dissemination level: PU

Page 37 of 61

These files are human readable and standardised, and are generated by the DRIP planner. The provisioning
engine can then be used in a number of scenarios to satisfy the static and runtime requirements of big data
applications:

1. Provisioning networked infrastructure. While the user can describe network topologies using
networked infrastructure providers such as ExoGENI, the user cannot get network topology on other
providers such as EC2 or EGI FedCloud25, as shown in Figure 5-4. EC2 and EGI FedCloud represent the
current state of most cloud providers whether private or public. With our Cloud engine, the user can
describe his own network topology even on these Clouds by defining the field ‘connections’ in
infrastructure descriptions. In addition, it is transparent to the provider, which means that the cloud
provider does not need to do anything to support this feature. Thus our Cloud engine is able to set up a
networked virtual Cloud across even public Clouds which do not explicitly support network topology
configuration.

Figure 5-4 Provisioning networked infrastructure.

2. Fast failure recovery. Figure 5-5 describes the process of failure recovery with our Cloud engine. There
are two key components of the Cloud engine that are relevant to this scenario: the provisioning agent and
the monitoring agent. When some data centre is down or inaccessible, a probe previously installed on the
node can detect this. The monitoring agent can then invoke the provisioning agent to perform recovery.
The provisioning agent then just needs to provision the specific part of the application hosted on the
failed infrastructure. As the infrastructure description is already partitioned, it is easy for the agent to
provision the same topology in another data centre. Meanwhile, the connection method will keep the
topology identical to the previous one. From the application point of view, the topology is the same and
the application does not need to be changed. Avoiding the re-provisioning of the whole infrastructure
can save a lot of time and make the overall infrastructure more reliable.

Figure 5-5 Fast failure recovery.

25 https://www.egi.eu/services/cloud-compute/

643963– SWITCH Dissemination level: PU

Page 38 of 61

3. Auto scaling among data centres or Clouds. Currently, the user can only define an auto-scaling group
in one data centre as in the example of Amazon EC2. Moreover, most cloud providers do not even afford
this function. With our Cloud engine, the user just needs to define an address pool for auto-scaling.
Figure 5-6 shows the process. The scaling part can then be provisioned from another data centre or
Cloud at runtime. More importantly, the address pool can be defined in the range of private IP addresses.
The application can then be configured to know where the scaling part is before execution. Otherwise,
the application needs to be configured manually at runtime. This is also useful for large-scale
applications; when the resources are exhausted or limited in one data centre or Cloud currently in use,
the Cloud engine can make the infrastructure scale-out to use resources from other locations.

Figure 5-6 Auto-scaling among data centres or Clouds.

5.3 Evaluating new developments
We set up experiments to test the feasibility of the solution provided by the DRIP provisioner,
supplementing the network experiments of [Zhou et al., 2016]. Specifically, the feasibility of transferring
data between different provisioned sites (i.e. data centres) and data sources (e.g. sensors deployed in the
field) under different conditions. In order to simulate a realistic scenario, we create four objects in the
experiment. The detailed properties of these objects are listed in Table 5-1.

Table 5-1 Properties of objects in the experiment.

We use a laptop to act in the role of data collector and put it in different network environments. For object 1,
the laptop is connected to its home network via WIFI. This object is designed to simulate the situation where
the data collector is far from the regional data centre and does not have a particularly good network
connection. Object 2 is deployed within the campus network of UvA (University of Amsterdam) to simulate
the situation where the data collector is close to the regional data centre and does have a very good network
connection. Objects 3 and 4 are two VM nodes provisioned by our Cloud engine within different locales
provided by the ExoGENI infrastructure platform. They are connected via private IP addresses far from each
other geographically. We adopt the second connection method described in Section 2 (IP tunnelling). There
are two main scenarios we need to compare. The first is the deployment of all the components in one data
centre without use of our engine. The second is the adoption of our solution, which is to distribute the
components on the virtual Cloud set up by our engine.

643963– SWITCH Dissemination level: PU

Page 39 of 61

We design the first experiment to test the latency in these two scenarios. The results are shown in Figure 5-7.
We start sixty ping requests one by one between different objects of Table 5-1. From the legend in the figure,
we can tell which link between two objects each plot belongs to. In addition, “S1” preceding the legend
indicates that it refers to the first scenario (without engine) described above and “S2” for the second scenario
(with engine). It is clear that the latency is lower when the data collector is closer to the server. In the first
scenario, despite the fact that the data collector has good network connectivity, the average latencies are
nearly ten times higher than those in the second scenario. Moreover, the latencies in scenario 1 are not stable,
especially when network access is bad, which is common for real data collectors.

Figure 5-7 Latency comparison.

The second experiment tests the bandwidth in both scenarios. Figure 5-8 shows the results. We measure the
bandwidth continuously over 200 seconds. The corresponding y-axis of all blue lines in this figure is on the
left, measured in Mbps. The corresponding y-axis of the green line is on the right, measured in Kbps. Figure
5-8 shows that the quality of the cloud-based network is better. The link between the two VMs (objects 3 and
4) provisioned by our Cloud engine use a cloud-based network which exhibits superior bandwidth. If we
deploy the application without our solution, data collectors are needed to directly connect to the remote
server. Two lines in Figure 5-8 with “S1” denote the performance. Although object 2 is in a good network
environment, the average bandwidth is 26 Mbps less when it is directly connected to the remote server.
Moreover, it is obvious that the bandwidth of the cloud-based network is more stable. In addition, the green
line shows that when data collectors do not have good network access, the bandwidth is much worse.

Figure 5-8 Bandwidth comparison.

643963– SWITCH Dissemination level: PU

Page 40 of 61

The transmission time for data collectors can therefore be reduced using our solution. Our engine can set up
a virtual Cloud that considers the underlying network in order to better satisfy the nearly real-time
requirements of the application to the extent that it is possible. This kind of consideration is essential for data
collectors to work more efficiently as part of a larger distributed system.

5.4 Summary
There are several innovations demonstrated by the DRIP provisioner. These innovations can help satisfy the
requirements of time-critical applications generated using SWITCH.

1. Fast and flexible. Multiple smaller infrastructures can be provisioned with less overhead. If some part of
the infrastructure crashes, we just need to re-provision the smaller sub-infrastructure containing the
failed component, not the whole aggregate infrastructure. This property can minimise violations of the
real-time constraints of some quality-critical applications. Flexibility in where parts of the application
are provisioned can also help satisfy any geographic requirements of the application.

2. Flexible scaling. As cloud providers often have limitations on the scale of infrastructure provisioned for
a particular application, our mechanism puts forward a way to provision large-scale infrastructure across
multiple domains. The infrastructure can then even scale across cloud providers.

3. Transparency. Our mechanism is not only transparent to cloud providers but also to application
developers. From the providers’ point of view, there is nothing required of them to support this kind of
provisioning. From the point of view of developers, the infrastructure is provisioned as designed,
including selected IP addresses, the precise locations of components hidden in the network
configuration. It is also transparent to use with tools like Apache Hadoop26 or Spark27, as long as they are
configured with the proper private IP addresses.

4. Standardised infrastructure level auto-provisioning. The Cloud engine only takes as input description
files like those described in Section 5.2 The files are human readable and can be written compatible with
the emerging TOSCA standard. Hence, they are easy to standardise. Compared with other automatic
provisioning tools, it not only provisions the separate instances but also the network as defined by the
user. Moreover, the application can be installed and run automatically after the infrastructure is
provisioned.

With this provisioning engine, application developers can design and deploy their applications on an inter-
locale virtual Cloud. The results of the simple experiments we have so far conducted demonstrate the
feasibility and potential efficiency of our solution, though still many challenges must be tackled in order to
truly support multi-cloud environments.

26 http://hadoop.apache.org/
27 https://spark.apache.org/

643963– SWITCH Dissemination level: PU

Page 41 of 61

6 Deadline-aware deployment for SWITCH applications
For DRIP, we propose a Deadline-aware Deployment System (DDS) for time-critical applications in clouds
which accounts for deadlines on the actual deployment time of application components. DDS enables users
to automatically deploy time-critical applications and provide scheduling mechanisms to guarantee
deployment deadlines. First, DDS helps users to create a local repository for application components instead
of using a remote repository, providing a guarantee of bandwidth for transmitting application packages
where the transmission rate directly from the remote repository is widely varying. To be deadline-aware,
DDS schedules deployment requests based on Earliest Deadline First (EDF) [Liu and Layland, 1973] which
is a classical scheduling technique to minimise the number of deployments that miss deadlines. Furthermore,
we design bandwidth-aware EDF to facilitate DDS to satisfy a greater number of deadline requirements and
achieve sufficient utilisation of bandwidth. In the evaluation, we demonstrate that DDS significantly reduces
the number of deployments that miss deadlines, and leverages bandwidth sufficiently.

The research and development results of this section have been published in International Conference Euro-
Par [Hu et al., 2017]

We summarise our contributions as follows:

• We designed and implemented DDS, a deadline-aware deployment system which can support automatic
deployments of time-critical applications in clouds.

• We built on DDS to implement deployment scheduling algorithms that minimise the number of
deployments that miss deadlines and maximize the utilisation of bandwidth.

• We experimentally evaluated the benefits of DDS on the ExoGENI test-bed and large-scale simulations
by comparing it with three different scheduling techniques.

6.1 Problem specification
A typical scenario for deploying distributed applications in Clouds involves two basic steps: transmitting
necessary application packages or software components from remote repositories to virtual machines (VMs)
in the provisioned infrastructure; and installing the software once runnable. Containers, e.g. built using
Docker [Merkel, 2014], are the default way to wrap application components in SWITCH.

For a distributed application, the deployment service has to know the location of application components,
and the location to deploy (VMs) for each component. Those container images are often stored in a
repository, e.g. Docker hub, that is not a part of the provisioned virtual infrastructure. The deployment
service should schedule the sequence of each component based on the application description for
transmitting and installing each individual component. The time for deploying a single container (𝑇!)
typically contains time cost for transmitting the component from its repository 𝑇!) and installing (extracting
files from the Docker image) the component 𝑇!). The total time of the deployment of the whole application
starts from the first component transmission until the last component finishes its installation. When an
application contains more components, careless scheduling of the deployment sequence might lead to a high
time cost, which can eventually influence the execution of the application if key application components are
delayed during deployment.

𝑇! depends on the size of the container and the network bandwidth between repository and target. 𝑇! mainly
depends on the performance of the VM and the complexity of the container itself. In many cases, 𝑇! is much
bigger than 𝑇!. Table 6-1 shows some observations in the ExoGENI Cloud environment [Baldin et al., 2016].
We created VMs which are ‘xo.medium’ configuration in three different locations: Boston, Washington and
Houston. We found that 𝑇! is widely varying because the internet connection between VMs and Docker hub
is different between different locations, and 𝑇! is stable for the same VM configurations. For meeting the
deployment time constraints of time-critical applications in provisioned virtual infrastructure, the key
challenge is how to minimise the transmission time 𝑇! and predict the installation time 𝑇!. Installation time
prediction is not the focus of this section—we assume that existing predictors [Smith et al., 1998] can

643963– SWITCH Dissemination level: PU

Page 42 of 61

achieve good estimations of installation time. Instead, we focus on the transmission process (𝑇!) of
deployment.

Table 6-1 Comparison of transmission time and installation time in different locations.

The deployment model in this work is a set of deployment requests. The deployment service has to optimise
the time cost by scheduling component transmissions carefully, and parallelise the data transfer based on the
time constraint obtained from the application. We model the deployment request as a tuple 𝑅! = (𝑣! , 𝑠! ,𝑑!),
where 𝑣! is the target virtual machine to deploy request 𝑅!, 𝑠! is the application size (e.g. in Mb), and 𝑑! is its
deadline. As we concentrate on transmission, we model bandwidth information for provisioned VMs as sets
𝐵 = 𝑏!, 𝑏!, 𝑏!,… , 𝑏! , where 𝑏! denotes the bandwidth of virtual machine 𝑖. This means that the throughput
of virtual machine 𝑖 cannot exceed 𝑏! during the transmission process, and the bandwidth is stable based on
the SLA provisioning mechanisms [Casalicchio and Silvestri, 2013] in this context. We denote the
bandwidth of the target machine 𝑣! as 𝑏!, so that the transmission time of request 𝑅! can be represented as
𝑇! = 𝑠! 𝑏! . Similarly, the deployment time can be represented as 𝑇! = 𝑠! 𝑏! + 𝑇!. The problem of this
paper is thus to investigate the scheduling mechanisms needed to meet the deployment deadlines (i.e. ensure
that 𝑇! ≤ 𝑑!) of time-critical applications in clouds.

6.2 Methodology and implementation
DDS aims to provide a deadline-aware, efficient and automatic deployment system that supports time-critical
applications on infrastructure as a service on cloud systems, focusing on the network of the underlying
distributed system to provide the best guarantee for deployment within deadlines. We follow a number of
design principles:

1. Repository location. The repository for the application is a shared storage from which application
packages can be fetched to be installed on another machine. The repository can be located in a remote
server or in the cloud already. The location of the repository can directly impact the deployment time
because the network bandwidth between cloud VMs and between a VM and a remote repository in a
different location can be very different. Compared to a remote repository, a local repository within a
cloud has some obvious advantages. First, the local repository has greater transmission capacity than the
remote repository. Second, the bandwidth of the local repository inside a cloud is more stable, which
provides a guarantee regarding the transmission time. Third, the local repository is more flexible due to
the possibility of personalized configuration. Thus, DDS would help users to create a local repository
first if there is only a remote repository from which to fetch application packages.

643963– SWITCH Dissemination level: PU

Page 43 of 61

Figure 6-2 Awareness of deadlines can be used to meet two deadlines.

2. Deadline-aware mechanism. As the goal of DDS to meet the deadline of requests, whether the system
is aware of the deadline is important for deployment. Consider a common time-critical application
scenario involving two deployment requests sent to the same application component provider
simultaneously, where one request has a tighter deadline than the other. The resulting requests share a
bottleneck via which to transmit application packages. As shown in Figure 6-2, with today's setup, the
transport protocol (e.g. TCP) strives for fairness and the transmission finishes for both requests almost
simultaneously. However, only one of the requests meets its deadline which makes the another request
useless or degrades its value. Alternatively, given explicit information about deployment deadlines, the
system can arrange the transmission order to better meet the deployment deadline.

Figure 6-3 Awareness of bandwidth can be used to meet two deadlines.

3. Bandwidth-aware mechanism. In addition to deadline-aware scheduling, to be aware of bandwidth is
another significant attribute for deployment. Consider another scenario with two deployment requests,
where the second request pulls a larger application package. The resulting requests also share a link to
transmit their respective packages. As shown in Figure 6-3, the deployment system has information
about the deadlines and schedules the transmission based on those deadlines. However only one request
meets its deadline. Because the transmission bottleneck is the bandwidth of the target machine, there is
some spare bandwidth on the server which is not used. Thus, given explicit information about the
bandwidth capacity of each machine in the cloud, the system could schedule more deployment requests
and leverage the bandwidth more efficiently.

The main goal of our algorithms is to minimise the deadline miss rate: the application packages should be
transmitted to the target machine within the deadline wherever possible. In addition to minimising miss rate,
we should maximize the bandwidth utilisation to reduce the total transmission time. To achieve both these
goals, we employ EDF to prioritise requests and design bandwidth-aware EDF to support parallel
transmission and realise dynamic rate control.

��� ���

R1

R2

Non Deadline Aware

Requests

��� ���

R1

R2

 Deadline Aware

Time Time

��� ���

R1

R2

Non Bandwidth Aware

Requests

��� ���

R1

R2

 Bandwidth Aware

Time Time

643963– SWITCH Dissemination level: PU

Page 44 of 61

1. EDF scheduling. The key insight guiding the design of deadline-aware scheduling is derived from the
classic real-time scheduling algorithm Earliest Deadline First (EDF) [Liu and Layland, 1973], which
prioritises tasks based on their deadline. EDF is an optimal scheduling algorithm in that if a set of
deadlines can be satisfied under some schedule, then EDF can satisfy them too. We adopt EDF to
schedule deployment requests. When a deployment request comes, DDS compares the deadline of new
request with previous requests and then sets the corresponding priority relative to the other deadlines.
DDS then puts the new request into the request queue where the requests are sorted by priority. The
algorithm is described in Algorithm 1. Consequently, DDS obtains the request from the queue and starts
to transmit application packages to the target machine.

2. Bandwidth-aware EDF scheduling. In addition to EDF scheduling, we design bandwidth-aware

scheduling in cooperation with EDF scheduling. The key idea of bandwidth-aware scheduling is to make
use of the spare bandwidth available between the local repository and the target as much as possible for
parallelising multiple requests. Thus, DDS needs the bandwidth information for each machine in the
cloud. DDS would collect the bandwidth information before the whole deployment procedure begins.

EDF is optimal when the deadlines can be satisfied. However, without bandwidth information, EDF would
schedule requests in a sequential way which leads to insufficient utilisation of bandwidth or even missed
deployment deadlines. However if we directly schedule requests in a parallel way, the bandwidth contention
among different requests can also cause deployment deadlines to be missed. Therefore, the challenge of
bandwidth-aware scheduling is how to dynamically allocate transmission rates for deployment requests in

643963– SWITCH Dissemination level: PU

Page 45 of 61

order to avoid unnecessary contention. For this purpose, we design bandwidth-aware EDF algorithm as
described in Algorithm 2.

As per the description of bandwidth-aware EDF, if there is spare bandwidth in the local repository, DDS will
continue to obtain requests from the request queue until the required bandwidth is equal or greater than the
local repository bandwidth. DDS then sets the specific rate for the last deployment request to make sure the
total required bandwidth is equal to the bandwidth of local repository. Consequently, it avoids bandwidth
contention with previous deployment requests and makes full use of spare bandwidth to transmit. Once a
new deployment request arrives, DDS performs bandwidth-aware EDF scheduling after putting the request
in the request queue. When one deployment request finishes, DDS will allocate the released bandwidth for
the running requests first, and then perform bandwidth-aware EDF scheduling again.

6.3 Evaluation
In this section, we describe experiments for quantitative evaluation of the deadline-aware deployment
system. We perform three kinds of experiments. First, we evaluate the transmission time using a DDS local
repository versus a remote repository. Second, we evaluate DDS in comparison with three typical scheduling
algorithms by running experiments on our cloud test-bed. Third, we evaluate DDS in larger-scale
simulations.

6.3.1 Repository Evaluation
In this section, we compare the transmission time to a target machine from a DDS local repository and a
remote repository based on Docker. In most common cases, the application provider only has the repository
outside cloud. Thus, DDS would help users to create local repository within their cloud first. We provision
two virtual machines with 50Mbps bandwidth in the ExoGENI Boston rack and create a local repository in
one of them. Then, we use the other machine to fetch the image from the local repository and also the
original remote repository (Docker Hub). The comparative results are shown in the Table 6-2. Note that the
transmission time (𝑇!) from the local repository is much less than from the remote repository, the reason
being that the bandwidth inside Cloud is much better than outside.

Table 6-2 Comparison of transmission times from different repositories.

6.3.2 Test-bed experiments
In this section, we evaluate DDS alongside three typical scheduling algorithms in the ExoGENI test-bed.
ExoGENI is a networked infrastructure-as-a-service (NIaaS) platform where researchers can define the
network topology and bandwidth of virtual infrastructures. In our experimental setup, we chose the
“xo.xlarge” type of machine as our local repository, and all other application nodes we chose “xo.medium”
type machines. The guest OS in VMs which are provisioned for evaluation is Ubuntu 14.04. In the
experiment, we use iPerf [Tirumala et al., 2005] to simulate the application package transmission, therefore
the size of application package can be customised via iPerf in the evaluation. For transmission rate control,
we leverage Linux Traffic Control (TC) to perform deployment request rate limiting. We use two-level
Hierarchical Token Bucket (HTB) in TC: the root node classifies requests to their corresponding leaf nodes
based on IP address and the leaf nodes enforce each request rate. We compare the following schemes with
DDS:

643963– SWITCH Dissemination level: PU

Page 46 of 61

• FIFO: All the deployment requests are scheduled by the arrival time of the request in a sequential way.
• EDF: All the deployment requests are scheduled by the EDF algorithm in a sequential way.
• PARALLEL: All the deployment requests are scheduled immediately after arrival in a parallel way.

Through comparison with these three schemes, we can inspect the benefits from DDS for different aspects.
FIFO is the most common scheduling algorithm in distribution. EDF is optimal in sequential scheduling
when the deadline can be satisfied, but it is not bandwidth-aware. PARALLEL can make high utilisation of
the bandwidth, but it is not deadline-aware. We compare the number of schedulable requests (requests that
meet the deadline) and the total deployment time among different schemes. The number of schedulable
requests can indicate the satisfaction of deadline requirements. The total deployment time can indicate the
utilisation of network bandwidth.

In this experiment, we provision two kinds of bandwidth configuration to evaluate DDS as described by
Table 6-3. We instantiate four nodes to deploy time-critical applications in ExoGENI. For these four nodes,
we generate six deployment requests which include the target machine, application size, arrival time and the
deadline. To understand the scheduling mechanisms in DDS better, we assume that the installation time 𝑇! of
each application is 1s in this experiment.

Table 6-3 Bandwidth configuration (left) and deployment requests (right).

In Figure 6-4 (left), we inspect the number of schedulable requests on different schemes. We observe that
DDS can schedule more requests in two different bandwidth configurations, because sequential scheduling
(EDF, FIFO) can not meet all the deadlines when multiple requests emerge simultaneously, and direct
parallel scheduling suffers from bandwidth contention. Figure 6-4 (right) shows the total deployment time of
various schemes. We note that the total deployment time of DDS is less than EDF and FIFO, and similar to
PARALLEL. This indicates that DDS makes full use of network bandwidth.

Figure 6-4 Comparison of the number of schedulable requests in various schemes (left) and the total deployment time in

various schemes (right).

643963– SWITCH Dissemination level: PU

Page 47 of 61

6.3.3 Large-scale simulations
Our simulations evaluate DDS considering the common public cloud providers (EC2, Azure). We evaluate
the deployment schedulable ratio which is the percentage of schedulable requests in different schemes.

• VM configuration. We equip the deployment server with 10Gbps bandwidth connection and application
node with 1Gbps bandwidth connection which are typical configuration in public cloud. In the
simulation, the number of application nodes range over 10, 20, 40 and 80 nodes which are sufficient to
account for most distributed cloud applications.

• Deployment requests. We simulate the deployment service running 10 days (𝑇!"##$#%) in the
experiment. During this period, we generate deployment requests in different densities to simulate
deploying various applications on each node. We denote 𝑆!"!#$! as the total application size of all
deployment requests on node 𝑖 . The request density of node 𝑖 is equal to
𝑆!"!#$! 𝑇!"##!"# × 10 𝐺𝑖𝑔𝑎𝑏𝑖𝑡 , and the request density of whole system is the average for each node.
The overall request density varies from 0.1 to 0.9. In the experiment, the deadline (𝑑!) of each request
ranges from 10s to 100s, and the application size is equal to 𝑑! × 1 𝐺𝑖𝑔𝑎𝑏𝑖𝑡. We assume the installation
time (𝑇!) is 1s in the simulation.

Figure 6-5 Comparison of the deployment schedulable ratio for 10 nodes (top left), 20 nodes (top right), 40 nodes (bottom left)
and 80 nodes (bottom right).

Figure 6-5 shows the deployment schedulable ratio in different scenarios. We observe that DDS can reduce
from 24% to 83% of the deployment deadline miss ratio compared to EDF, from 26% to 89% compared to
FIFO, and up to 86% compared to PARALLEL. Because EDF and FIFO schedule deployment requests in

643963– SWITCH Dissemination level: PU

Page 48 of 61

sequential way, DDS can take advantage of parallelised deployments. The PARALLEL scheme parallelises
deployments but suffers severe bandwidth contention as request density increases. In contrast, DDS is
bandwidth-aware and provides dynamic transmission rate control to avoid bandwidth contention for different
deployment requests. In summary, DDS significantly reduces the number of deadline missing requests for
deploying cloud applications.

6.4 Summary
In recent years, deployment has been an important topic in distributed environment, service-oriented systems
and cloud computing, as well as in some of SWITCH’s contemporary projects such as ENTICE28. The
techniques in DDS are related to the following areas of research:

• Automatic cloud application deployment. To enable automatic deployment has been the focus of
several recent works. SO-MVDS [Gao et al., 2012] allows users to design and create virtual machines
with specific services running in them and define a service deployment request to enhance the efficiency
of service deployment. Li et al. [Li et al., 2012] propose a general approach to application deployment.
They adopt contextualisation process which is to embed various scripts in VM images to initiate
applications. DDS, on the other hand, is compatible with Docker containers, achieving automatic
deployment more easily.

• On-demand image distribution. The idea of distributing images in clouds efficiently has been explored
in recent works. [Vaquero et al. 2015] proposes a solution based on combining hierarchical and Peer to
Peer (P2P) data distribution techniques. VDN [Peng at al., 2012], a new VM image distribution network
on the top of chunk-level, enables collaborate sharing in cloud data centres. These approaches focus on
fast transmission. In contrast, DDS is not only transmitting images efficiently but is also aware of
deadlines via scheduling mechanisms.

• Deadline-aware scheduling techniques. D3 [Wilson et al., 2011] and D2 TCP [Vamanan et al., 2012]
are transport protocols designed for deadline-aware transmission inside data centres. These protocols add
the deadline information to TCP and provide control mechanisms based on the deadline information.
Techniques like Karuna [Chen et al., 2016] and pFabric [Alizadeh et al., 2013] prioritise network flows
to transmit. All these approaches schedule transmission at flow level. In contrast, DDS exploits the
information of bandwidth to schedule transmission in application level which is more relevant to users
requirements.

It is challenging to deploy time-critical applications into clouds while meeting the time constraints of
deployment. This is an important and practical problem, but has been neglected by prior work in this field.
For DRIP we use DDS for the deployment agent component in order to help users to create local repositories
and automatically deploy applications into Clouds. We have investigated the scheduling mechanisms in
cloud deployment systems and implemented a bandwidth-aware EDF scheduling algorithm in DDS. DDS
schedules deployment requests based on deadline and bandwidth information to make better scheduling
decision. In the evaluation, we showed that DDS leverages network resources sufficiently and significantly
reduces the number of missed deployment deadlines.

28 http://www.entice-project.eu/

643963– SWITCH Dissemination level: PU

Page 49 of 61

7 Summary
The development of DRIP has been conducted in accordance with the basic plan illustrated by Figure 7-1. At
the time of publication, the project is entering the fifth phase of development, with the integration of the
second release of the SWITCH workbench, providing tools for provisioning and controlling time-critical
applications on both private and public clouds, and indeed offering the basic support for inter-cloud
provisioning needed for the final ‘federated public cloud test-bed’ objective.

7.1 Software functionality in public releases
With regards to DRIP, the second release of the SWITCH workbench will contain a fully functional and
integrated DRIP service suite, managed via a single online manager component. In particular, within this
deliverable we have reviewed four main topics of research and innovation within the SWITCH project over
the prior twelve months that serve to directly contribute to the development of DRIP:

• The extension of the DRIP planner algorithm MEPA to support planning of the placement of SDN
controllers in software-defined networks.

• The prototyping of a performance modelling service for collecting information about the
performance of cloud resources for different kinds of application component, important for helping
DRIP determine the best selection of resources for a range of different applications with different
time-critical constraints.

• The further refinement and experimental evaluation of the DRIP provisioner, supporting multi-site
provisioning across multiple data centres.

• The development of a deployment agent for DRIP that can maximise use of bandwidth to expedite
the retrieval and installation of application components from remote repositories.

Single	private	
Cloud	test-bed	

Single	public	
cloud	test-bed	

Federated	public	
cloud	test-bed	

Federated	private	
cloud	test-bed	

Implementa8on	
use-cases	

Test	use-cases	

Business	use-cases	

Phase	1-3																											Phase	4																														Phase	5																																					Phase	6	

Phase	4																																	Phase	5																																Phase	6	

Phase	5																												Phase	6	

SWITCH	
(Version	1)	

SWITCH	
(Version	2)	

SWITCH	
(Version	3)	

SWITCH	
(Version	4)	

The	SWITCH	project	can	
be	divided	into	6	

phases.		
Public	release	V1	 Public	release	V2	

Figure 7-1 Overview of SWITCH development phases.

643963– SWITCH Dissemination level: PU

Page 50 of 61

Architecture
components
(defined in D2.2)

Functionality in V1 Functionality in
V2

Key
Performance
Indicators (KPI)

Current status

DRIP manager Yes Yes Scalability and
reliability

Achieved KPI

Application
interpreter

Yes (part of DRIP
manager)

Yes (part of DRIP
manager)

Functionality Achieved KPI

Infrastructure
Planner

Yes Yes Support for wide
range planning
constraints

Partial: planner
supported mainly
time related
constraints, e.g.,
performance and
deadline-based.

Infrastructure
interpreter

Yes (inside DRIP
manager)

Yes (inside DRIP
manager)

Functionality Achieved KPI

Infrastructure
evaluator

No. Yes Accuracy Partial: current
version can do
correctness
evaluation.
Performance fitness
is still under
research.

Discovery service Yes (Inside DRIP
knowledge base)

Yes (Inside DRIP
knowledge base)

Supported
providers.

Implemented
support for
ExoGENI, Amazon
EC2 and FedCloud.
More will be
included

Infrastructure
Provisioner

Yes Yes Provisioning
time, failure
recovery time.

Achieved: analysis
of current
provisioner
provisioning time
in [Zhou et al.,
2016].

Resource selector Yes (In planner) Yes (Part in
planner, and part as
performance
modeller)

Supported cloud
providers.

Support for
ExoGENI, Amazon
EC2 and EGI
FedCloud.

Cloud broker Yes (Inside
infrastructure
provisioner)

Yes (Inside
infrastructure
provisioner)

Supported
providers.

Support for
ExoGENI, Amazon
EC2 and EGI
FedCloud.

643963– SWITCH Dissemination level: PU

Page 51 of 61

SLA Negotiation Partially in performance modeller;
however, the negotiation part will be our
research topic and not in software. We
explained the situation during review
meeting.

N/A On our research
agenda, to be
finished soon.

SWITCH executor Yes (deployment
agent, and execution
for container)

Yes (Control agents
for container and
VM, deployment
agent with real-
time).

Deployment time,
repository
support, deadline
support and
liveness.

Achieved: analysis
of deployment
agent capabilities
in [Hu et al., 2017].

The liveness (fault
tolerance) is jointly
with provisioner.

7.2 Innovation
The innovation of the DRIP system lies in its support for time-critical concerns in the planning and
provisioning of virtual infrastructure and the deployment and execution of application components on such
infrastructure. For each major component of DRIP, we can identify a specific key innovation over the
existing state of the art.

Component (in release) Current state of the Art Innovation

DRIP manager Many suites provide integrated
facilities for Cloud planning and
provisioning.

Support for scalable services via use of
message queuing to distribute
workloads automatically.

Infrastructure planner Support for single deadlines for
complete application workflows
based on critical path analysis.

Support for multiple deadlines on
application workflows.

DRIP performance
modeller

Clouds publish the attributes of the
resources they offer, which clients
must evaluate against their
requirements.

A framework for automatic testing of
resources against different kinds of
application component; ability to
aggregate information within DRIP
knowledge base in order to improve
planning.

Infrastructure
provisioner

Ability to provision a given
application in a single cloud
environment, or for multiple clouds
with manual network configuration.

Support for multi-locale provisioning
with a single seamless network topology
handled automatically by the provisioner
without intervention by client or
cloud provider.

DRIP deployment agent Support for application component
retrieval from remote repositories.

Support for optimal use of network
when retrieving remote components
to meet deployment deadlines.

643963– SWITCH Dissemination level: PU

Page 52 of 61

The DRIP subsystem is used in the project together with the other two to implement the industrial pilot
cases. Besides which DRIP has also been exploited in EU H2020 ENVRIPLUS project for optimising data
services in e-Infrastructures. A finished use case is to enhance the data subscription service of European
EURO-ARGO29 research infrastructure for generating data products for distributed partners. EGI FedCloud
is used as a test-bed. The demo of the use case is available on YouTube30. A research paper has also been
submitted to the IEEE e-Science conference. In addition there are a number of other on-going use cases, e.g.,
for optimising data processing workflows in EISCAT_3D31 and EPOS32.

In the last phase of the project, exploiting DRIP within the integrated SWITCH will be highlighted. A
detailed exploitation plan and report will be presented in D6.4 “Report on dissemination, communication,
collaboration, exploitation and standardization V3”.

29 http://www.euro-argo.eu
30 https://www.youtube.com/watch?v=PKU_JcmSskw&t=19s
31 http://www.eiscat.se
32 http://www.epos-ip.eu

643963– SWITCH Dissemination level: PU

Page 53 of 61

Bibliography
[Abd-El-Barr, 2009] M. Abd-El-Barr, “Topological network design: A survey,” Journal of Network and
Computer Applications, vol. 32, no. 3, pp. 501–509, 2009.

[Abrishami et al., 2013] S. Abrishami, M. Naghibzadeh, and D. Epema. “Deadline-constrained work- flow
scheduling algorithms for infrastructure as a service clouds”. Future Generation Computer Systems,
29(1):158–169, 2013.

[Alamri et al., 2013] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A.
Hossain, “A survey on sensor-cloud: architecture, applications, and approaches,” International Journal of
Distributed Sensor Networks, vol. 2013, 2013.

[Alizadeh et al., 2013] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, S. Shenker.
“pfabric: Minimal near-optimal datacenter transport”. In: ACM SIGCOMM Com- puter Communication
Review. vol. 43, pp. 435–446. ACM (2013)

[Baldin et al, 2016] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Orlikowski, C.
Heermann, J. Mills. “ExoGENI: A multi-domain infrastructure-as-a-service testbed”. In: The GENI Book,
pp. 279–315. Springer (2016)

[Canon et al., 2008] L-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. “Comparative evaluation of the
robustness of DAG scheduling heuristics”. In Grid Computing, pages 73–84. Springer, 2008.

[Cai et al., 2013] Z. Cai, X. Li, and J. N.D. Gupta. “Critical path-based iterative heuristic for workflow
scheduling in utility and cloud computing”. In International Conference on Service- Oriented Computing,
pages 207–221. Springer, 2013.

[Cai et al., 2016] Z. Cai, X. Li, and J. N. D. Gupta. “Heuristics for provisioning services to workflows in
XaaS clouds”. IEEE Transactions on Services Computing, 9(2):250–263, 2016.

[Casalicchio and Silvestri, 2013] E. Casalicchio, L Silvestri. “Mechanisms for SLA provisioning in cloud-
based service providers”. Computer Networks 57(3), 795–810 (2013).

[Chen et al., 2016] L. Chen, K. Chen, W. Bai, M. Alizadeh. “Scheduling mix-flows in commodity data
centers with Karuna”. In: Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. pp.
174–187. ACM (2016)

[Cheng et al., 2015] T.Y. Cheng, M. Wang, and X. Jia, “QoS-guaranteed controller placement in SDN,” in
2015 IEEE Global Communications Conference (GLOBE-COM), pp. 1–6, IEEE, 2015.

[Chhetri et al., 2013] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart cloudbench–automated
performance benchmarking of the cloud,” in 2013 IEEE Sixth International Conference on Cloud
Computing. IEEE, 2013, pp. 414–421.

[Convolbo and Chou, 2016] M. Convolbo and J. Chou. “Cost-aware DAG scheduling algorithms for
minimizing execution cost on cloud resources”. The Journal of Supercomputing, 72(3):985–1012, 2016.

[Cordeiro et al., 2010] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J. M. Vincent, and F. Wagner.
(2010). “Random graph generation for scheduling simulations”. In Proceedings of the 3rd international ICST
conference on simulation tools and techniques (p. 60). ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[Cunha et al., 2017] M. Cunha, N. Mendonça, and A. Sampaio, “Cloud crawler: a declarative performance
evaluation environment for infrastructure-as-a-service clouds,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 1, 2017.

643963– SWITCH Dissemination level: PU

Page 54 of 61

[Deelman et al., 2009] E. Deelman, D. Gannon, M. Shields, I. Taylor. “Workflows and e-Science: An
overview of workflow system features and capabilities”, Future Gener. Comput. Syst. 25 (5) (2009) 528–
540.

[Durillo and Prodan, 2014] J. Durillo and R. Prodan. “Multi-objective workflow scheduling in Amazon
EC2”. Cluster Computing, 17(2):169–189, 2014.

[Evans et al., 2015] K. Evans, A. Jones, A. Preece, F. Quevedo, D. Rogers, I. Spasić, I. Taylor, V.
Stankovski, S. Taherizadeh, J. Trnkoczy, G. Suciu, V. Suciu, P. Martin, J. Wang and Z. Zhao. (2015).
“Dynamically reconfigurable workflows for time-critical applications”. In Proceedings of the 10th Workshop
on Workflows in Support of Large-Scale Science (p. 7). ACM.

[Fencl et al., 2011] T. Fencl, P. Burget, and J. Bilek, “Network topology design,” Control Engineering
Practice, vol. 19, no. 11, pp. 1287–1296, 2011.

[Fortin et al., 2012] F. A. Fortin, F. M. D. Rainville, M. A. Gardner, M. Parizeau, and C. Gagné. (2012).
“DEAP: Evolutionary algorithms made easy”. Journal of Machine Learning Research, 13(Jul), 2171-2175.

[Gao et al., 2012] W. Gao, H. Jin, S. Wu, X. Shi, J. Yuan. “Effectively deploying services on virtualization
infrastructure”. Frontiers of Computer Science 6(4), 398–408 (2012)

[Gódor and Magyar, 2005] I. Gódor and G. Magyar, “Cost-optimal topology planning of hierarchical access
networks,” Computers & operations research, vol. 32, no. 1, pp. 59–86, 2005.

[Heller et al., 2012] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in
Proceedings of the first workshop on Hot topics in software defined networks, pp. 7–12, ACM, 2012.

[Hock et al., 2014] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “Poco-framework for
pareto-optimal resilient controller placement in SDN-based core networks,” in Network Operations and
Management Symposium (NOMS), 2014 IEEE, pp. 1–2, IEEE, 2014.

[Hu et al., 2017] Y. Hu, J. Wang, H. Zhou, P. Martin, T. Arie, C. De Laat, and Z. Zhao, “Deadline-aware
deployment for time critical applications in clouds,” in 2017 International European Conference on Parallel
and Distributed Computing (Euro-Par 2017), 2017.

[Hwang et al., 2016] K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and Y. Wu, “Cloud performance
modeling with benchmark evaluation of elastic scaling strategies,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 1, pp. 130–143, 2016.

[Iosup et al., 2011] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of production
cloud services,” in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on. IEEE, 2011, pp. 104–113.

[Jeong and Figueiredo, 2016] K. Jeong and R. Figueiredo, “Self-configuring software-defined over-lay
bypass for seamless inter-and intra-cloud virtual networking,” in Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pp. 153–164, ACM, 2016.

[Kamiyama, 2009] N. Kamiyama, “Efficiently constructing candidate set for network topology design,” in
Communications, 2009. ICC’09. IEEE International Conference on, pp. 1–6, IEEE, 2009.

[Kosukhin et al., 2015] S.S. Kosukhin, S.V. Kovalchuk, A.V. Boukhanovsky. “Cloud technology for fore-
casting accuracy evaluation of extreme metocean events”, Procedia Comput. Sci. 51 (2015) 2933–2937.

[Kreutz et al., 2015] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103,
no. 1, pp. 14–76, 2015.

[Krzhizhanovskaya et al., 2011] V.V. Krzhizhanovskaya, G. Shirshov, N. Melnikova, R.G. Belleman, F.
Rusadi, B. Broekhuijsen, B. Gouldby, J. Lhomme, B. Balis, M. Bubak, et al., “Flood early warning system:
design, implementation and computational modules”, Procedia Comput. Sci. 4 (2011) 106–115.

643963– SWITCH Dissemination level: PU

Page 55 of 61

[Lange et al., 2015] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoffmann,
“Heuristic approaches to the controller placement problem in large scale SDN networks,” Network and
Service Management, IEEE Transactions on, vol. 12, no. 1, pp. 4–17, 2015.

[Laplane and Ovaska, 2011] P. A. Laplante, and S. J. Ovaska. (2011). “Real-time systems design and
analysis: tools for the practitioner”. John Wiley and Sons.

[Leitner and Cito, 2016] P. Leitner and J. Cito, “Patterns in the chaos—a study of performance variation and
predictability in public IaaS clouds,” ACM Transactions on Internet Technology (TOIT), vol. 16, no. 3, p.
15, 2016.

[Li et al., 1992] C.-L. Li, S. T. Mccormick, and D. Simchi-Levi, “On the minimum-cardinality-bounded-
diameter and the bounded-cardinality-minimum-diameter edge addition problems,” Operations Research
Letters, vol. 11, no. 5, pp. 303–308, 1992.

[Li et al., 2012] W. Li, P. Svärd, J. Tordsson, E. Elmroth. “A general approach to service deployment in
cloud environments”. In: Cloud and Green Computing (CGC), 2012 Second International Conference on. pp.
17–24. IEEE (2012)

[Liu and Layland, 1973] C. L. Liu, J. W. Layland. “Scheduling algorithms for multiprogramming in a hard-
real-time environment”. Journal of the ACM (JACM) 20(1), 46–61 (1973)

[Merkel, 2014] D. Merkel. “Docker: Lightweight linux containers for consistent development and
deployment”. Linux Journal 2014(239), 2 (2014)

[Elzinga et al., 2017] Elzinga, O., Koulouzis, S., Hu, Y., Wang, J., Zhou, H., Martin, P., Taal, A., de Laat,
C., and Zhao, Z (2017), Automatic collector for dynamic cloud performance Information, IEEE Networking,
Architecture and Storage (NAS), Shenzheng, China, Auguest 7-8, 2017

[Ongaro et al., 2015] F. Ongaro, E. Cerqueira, L. Foschini, A. Corradi, and M. Gerla, “Enhancing the quality
level support for real-time multimedia applications in software-defined networks,” in Computing,
Networking and Communications (ICNC), 2015 International Conference on, pp. 505– 509, IEEE, 2015.

[Park and Jun, 2009] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,”
Expert Systems with Applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[Peng et al, 2012] C. Peng, M. Kim, Z. Zhang, H. Lei. “VDN: Virtual machine image distribution network
for cloud data centers”. In: INFOCOM, 2012 Proceedings IEEE. pp. 181–189. IEEE (2012)

[Poslad et al., 2015] S. Poslad, S. E. Middleton, F. Chaves, R. Tao, O. Necmioglu, and U. Bügel. (2015). “A
semantic IoT early warning system for natural environment crisis management”. IEEE Transactions on
Emerging Topics in Computing, 3(2), 246-257.

[Rodriguez and Buyya, 2014] M. A. Rodriguez and R. Buyya. “Deadline based resource provisioning and
scheduling algorithm for scientific workflows on clouds”. IEEE Transactions on Cloud Computing,
2(2):222–235, 2014.

[Rosenburg, 2005] E. Rosenberg, “Hierarchical topological network design,” IEEE/ACM Transactions on
Networking (TON), vol. 13, no. 6, pp. 1402–1409, 2005.

[Scheuner et al., 2014] J. Scheuner, P. Leitner, J. Cito, and H. Gall, “Cloud work bench– infrastructure-as-
code based cloud benchmarking,” in Cloud Computing Technology and Science (CloudCom), 2014 IEEE
6th International Conference on. IEEE, 2014, pp. 246–253.

[Shah et al., 2013] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, “An architectural evaluation of
sdn controllers,” in Communications (ICC), 2013 IEEE International Conference on, pp. 3504–3508, IEEE,
2013.

643963– SWITCH Dissemination level: PU

Page 56 of 61

[Silva et al., 2013] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva, “Cloudbench:
experiment automation for cloud environments,” in Cloud Engineering (IC2E), 2013 IEEE International
Conference on. IEEE, 2013, pp. 302–311.

[Smith et al., 1998] W. Smith, I. Foster, V. Taylor. “Predicting application run times using historical
information”. In: Workshop on Job Scheduling Strategies for Parallel Processing. pp. 122–142. Springer
(1998)

[Tirumala et al., 2005] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs. “Iperf: The TCP/UDP
bandwidth measurement tool”. http://dast.nlanr.net/Projects (2005)

[Tsai and Rodrigues, 2014] C.-W. Tsai and J. J. Rodrigues, “Metaheuristic scheduling for cloud: A survey,”
Systems Journal, IEEE, vol. 8, no. 1, pp. 279–291, 2014.

[Tuba, 2010] M. Tuba, “An algorithm for the network design problem based on the maximum entropy
method,” in Proceedings of the American Conference on Applied Mathematics, Cambridge, USA, pp. 206–
211, 2010.

[Vamanan et al., 2012] B. Vamanan, J. Hasan, T. Vijaykumar. “Deadline-aware datacenter TCP (D2TCP)”.
ACM SIGCOMM Computer Communication Review 42(4), 115–126 (2012)

[Vaquero et al., 2015] L.M. Vaquero, A. Celorio, F. Cuadrado, R. Cuevas. “Deploying large-scale datasets
on-demand in the cloud: treats and tricks on data distribution”. IEEE Transactions on Cloud Computing 3(2),
132–144 (2015)

[Wang et al. 2017a] J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and Z. Zhao,
“Planning virtual infrastructures for time critical applications with multiple deadline constraints,” Future
Generation Computer Systems, 2017.

[Wang et al. 2017b] J. Wang, C. de Laat, and Z. Zhao, “Qos-aware virtual sdn network planning,” in
Proceedings of IFIP/IEEE International Symposium on Integrated Network Management. IEEE, 2017.

[Wilson et al. 2011] C. Wilson, H. Ballani, T. Karagiannis, A. Rowtron. “Better never than late: Meeting
deadlines in datacenter networks”. In: ACM SIGCOMM Computer Communication Review. vol. 41, pp. 50–
61. ACM (2011).

[Yu et al., 2005] J. Yu, R. Buyya, and C.K. Tham. “Cost-based scheduling of scientific workflow
applications on utility grids”. In First International Conference on e-Science and Grid Computing (e-
Science’05). IEEE, 2005.

[Zhao et al., 2011] Z. Zhao, P. Grosso, J. van der Ham, R. Koning, and C. de Laat. (2011). “An agent based
network resource planner for workflow applications”. Multiagent and Grid Systems, 7(6), 187-202.

[Zhao et al., 2015] Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, G.
Suciu, A. Ulisses et al., “Developing and operating time critical applications in clouds: The state of the art
and the switch approach,” Procedia Computer Science, vol. 68, pp. 17–28, 2015.

[Zhao et al., 2016] Z. Zhao, P. Martin, C. de Laat, K. Jeffery, A. Jones, I. Taylor, A. Hardisty, M. Atkinson,
A. Zuiderwijk-van Eijk, Y. Yin, Y. Chen, “Time critical requirements and technical considerations for
advanced support environments for data-intensive research,” in 2nd International workshop on Interoperable
infrastructures for interdisciplinary big data sciences (IT4RIs 16), in the context of IEEE Real-time System
Symposium (RTSS), Porto, Portugal, 2016.

[Zhang et al., 2016] Z. Zhang, D. Li, and K. Wu, “Large-scale virtual machines provisioning in clouds:
challenges and approaches,” Frontiers of Computer Science, vol. 10, no. 1, pp. 2–18, 2016.

[Zhou et al., 2016a] H. Zhou, Y. Hu, J. Wang, P. Martin, C. de Laat, and Z. Zhao, “Fast and dynamic
resource provisioning for quality critical cloud applications,” in 2016 IEEE 19th International Symposium on
Real-Time Distributed Computing (ISORC). IEEE, 2016, pp. 92–99.

643963– SWITCH Dissemination level: PU

Page 57 of 61

[Zhou et al., 2016b] Zhou, H., Hu Y., Wang, J., Martin, P., Su, J., de Laat, C. and Zhao, Z., (2016) Fast
Resource Co-provisioning for Time Critical Application Based on Networked Infrastructure, IEEE
International Conference on CLOUD (CLOUD) 2016, San Francisco US.

[Zhou et al., 2016c] Zhou, H., Martin, P., Su, J., de Laat, C. and Zhao, Z. (2016) A Flexible Inter-locale
Virtual Cloud For Nearly Real-time Big Data Applications, Proceedings of the 2nd International workshop
on Interoperable infrastructures for interdisciplinary big data sciences (IT4RIs 16), in the context of IEEE
Real-time System Symposium (RTSS), Porto, Portugal, November 29-December 2, 2016.

643963– SWITCH Dissemination level: PU

Page 58 of 61

A Resource API

name	 path	 methods	 description	
AnsibleOutputC
ontroller

/user/v1.0/deployer/ansib
le/
/user/v1.0/deployer/ansib
le/all
/user/v1.0/deployer/ansib
le/commands
/user/v1.0/deployer/ansib
le/ids
/user/v1.0/deployer/ansib
le/{id}

GET
DELETE
GET
GET
DELETE GET

This	 controller	 is	
responsible	 for	
showing	 the	 output	
from	 ansible	
executions	

BenchmarkContr
oller

/user/v1.0/benchmark/
/user/v1.0/benchmark/all
/user/v1.0/benchmark/ids
/user/v1.0/benchmark/{id}

GET
DELETE
GET
DELETE GET

This	 controller	 is	
responsible	 for	
handling	 cloud	
benchmark	 tests	
like	 sysbench	

CloudConfigura
tionController
0

/user/v0.0/switch/account
/configure/ec2
/user/v0.0/switch/account
/configure/geni

POST
POST

This	 controller	 is	
responsible	 for	
handling	 cloud	
credentials	 used	 by	
the	 provisoner	 to	
request	 for	
resources	 (VMs).	

CloudCredentia
lsController

/user/v1.0/credentials/cl
oud/
/user/v1.0/credentials/cl
oud/all
/user/v1.0/credentials/cl
oud/ids
/user/v1.0/credentials/cl
oud/sample
/user/v1.0/credentials/cl
oud/{id}
/user/v1.0/credentials/cl
oud/upload/{id}

POST
DELETE
GET
GET
DELETE GET
POST

This	 controller	 is	
responsible	 for	
handling	
CloudCredentials.	
CloudCredentials	
are	 a	 represntation	
of	 the	 credentials	
that	 are	 used	 by	 the	
provisoner	 to	
request	 for	
resources	 (VMs)	

ConfigurationC
ontroller

/user/v1.0/deployer/confi
guration/all
/user/v1.0/deployer/confi
guration/ids
/user/v1.0/deployer/confi
guration/post
/user/v1.0/deployer/confi
guration/upload
/user/v1.0/deployer/confi
guration/{id}

DELETE
GET
POST
POST
DELETE GET

This	 controller	 is	
responsible	 for	
storing	 PlayBook	
descriptions	 that	
can	 be	 used	 by	 the	
planner.	

DeployControll
er

/user/v1.0/deployer/all
/user/v1.0/deployer/deplo
y
/user/v1.0/deployer/ids
/user/v1.0/deployer/sampl

DELETE
POST
GET
GET

This	 controller	 is	
responsible	 for	
deploying	 a	 cluster	
on	 provisoned	
resources.	

643963– SWITCH Dissemination level: PU

Page 59 of 61

e
/user/v1.0/deployer/{id}

DELETE GET

DeployControll
er0

/user/v0.0/switch/deploy/
kubernetes
/user/v0.0/switch/deploy/
swarm

POST
POST

This	 controller	 is	
responsible	 for	
deploying	 a	 cluster	
on	 provisoned	
resources.	

KeyPairControl
ler

/user/v1.0/keys/
/user/v1.0/keys/all
/user/v1.0/keys/ids
/user/v1.0/keys/sample
/user/v1.0/keys/{id}

POST
DELETE
GET
GET
DELETE GET

This	 controller	 is	
responsible	 for	
handling	 user	 public	
keys.	 These	 keys	 can	
be	 used	 by	 the	
provisoner	 to	 allow	
the	 user	 to	 login	 to	
the	 VMs	 from	 the	
machine	 the	 keys	
correspond	 to.	

PlannerControl
ler

/user/v1.0/planner/all
/user/v1.0/planner/ids
/user/v1.0/planner/plan/
/user/v1.0/planner/vereif
y_plan
/user/v1.0/planner/{id}
/user/v1.0/planner/plan/{
tosca_id}
/user/v1.0/planner/post/{
name}
/user/v1.0/planner/tosca/
{id}
/user/v1.0/planner/post/{
level}/{name}/{id}

DELETE
GET
POST
POST
DELETE GET
GET
POST
GET
POST

This	 controller	 is	
responsible	 for	
planing	 the	 type	 of	
resources	 to	 be	
provisopned	 based	
on	 a	 TOSCA	
description.	

PlannerControl
ler0

/user/v0.0/switch/plan/pl
anning

POST This	 controller	 is	
responsible	 for	
planing	 the	 type	 of	
resources	 to	 be	
provisopned	 based	
on	 a	 TOSCA	
description.	

ProvisionContr
oller

/user/v1.0/provisioner/al
l
/user/v1.0/provisioner/id
s
/user/v1.0/provisioner/pr
ovision
/user/v1.0/provisioner/sa
mple
/user/v1.0/provisioner/{i
d}

DELETE
GET
POST
GET
DELETE GET

This	 controller	 is	
responsible	 for	
obtaining	 resources	
from	 cloud	
providers	 based	 the	
plan	 generated	 by	
the	 planner	

ProvisionContr
oller0

/user/v0.0/switch/provisi
on/execute
/user/v0.0/switch/provisi
on/upload

POST
POST

This	 controller	 is	
responsible	 for	
obtaining	 resources	
from	 cloud	
providers	 based	 the	

643963– SWITCH Dissemination level: PU

Page 60 of 61

plan	 generated	 by	
the	 planner	 and	
uploaded	 by	 the	
user	

ScriptControll
er

/user/v1.0/script/
/user/v1.0/script/all
/user/v1.0/script/ids
/user/v1.0/script/sample
/user/v1.0/script/upload
/user/v1.0/script/{id}

POST
DELETE
GET
GET
POST
DELETE GET

This	 controller	 is	
responsible	 for	
handling	 user	
scripts.	 These	 user	
can	 be	 used	 by	 the	
provisoner	 to	 run	
on	 the	 created	 VMs.	

ToscaControlle
r

/user/v1.0/tosca/all
/user/v1.0/tosca/ids
/user/v1.0/tosca/post
/user/v1.0/tosca/upload
/user/v1.0/tosca/{id}

DELETE
GET
POST
POST
DELETE GET

This	 controller	 is	
responsible	 for	
storing	 TOSCA	
descriptions	 that	
can	 be	 used	 by	 the	
planner.	

UserController /manager/v1.0/user/all
/manager/v1.0/user/ids
/manager/v1.0/user/modify
/manager/v1.0/user/regist
er
/manager/v1.0/user/{id}

GET
GET
POST
POST
DELETE GET

This	 controller	 is	
responsible	 for	
handling	 user	
accounts	

UserController
0

/manager/v0.0/switch/acco
unt/register

POST This	 controller	 is	
responsible	 for	
handling	 user	
accounts	

UserPublicKeys
Controller0

/user/v0.0/switch/provisi
on/confuserkey

POST This	 controller	 is	
responsible	 for	
handling	 user	 public	
keys.	 These	 keys	 can	
be	 used	 by	 the	
provisoner	 to	 allow	
the	 user	 to	 login	 to	
the	 VMs	 from	 the	
machine	 the	 keys	
correspond	 to.	

UserScriptCont
roller0

/user/v0.0/switch/provisi
on/confscript

POST This	 controller	 is	
responsible	 for	
handling	 user	
scripts.	 These	 user	
can	 be	 used	 by	 the	
provisoner	 to	 run	
on	 the	 created	 VMs.	

B Data Types

type	 description	

AnsibleOutput This	 class	 represents	 the	 the	 ansible	 out	 put	 for	 a	 specific	 VM.	 This	 can	 be	
used	 as	 a	 archive	 /	 log	 of	 ansible	 executions	 	

643963– SWITCH Dissemination level: PU

Page 61 of 61

AnsibleResult
This	 class	 represents	 an	 ansible	 execution	 result.	 This	 can	 be	 used	 as	 a	
archive	 /	 log	 of	 ansible	 executions	 for	 example	 how	 much	 time	 it	 took	 for	
execution,	 errors	 etc.	 	

BenchmarkResult This	 is	 the	 base	 class	 for	 users	 to	 own	 resources.	 Many	 classes	 extend	 this	
class	 	

CloudCredential
s

This	 class	 represents	 the	 cloud	 credentials.	 They	 are	 used	 by	 the	
provisoner	 to	 request	 for	 resources.	 	

DeployParameter
This	 class	 is	 used	 by	 the	 deployer	 to	 deploy	 software	
(swarm,kubernetes,ansible).	 It	 is	 generated	 by	 the	 provisioner	 to	 contain	
VM	 information.	 	

DeployRequest This	 class	 holds	 the	 necessary	 POJO	 IDs	 to	 request	 the	 deployment	 of	 a	
software	 	

DeployResponse
This	 class	 represents	 the	 response	 of	 a	 deploy	 request.	 It	 may	 hold	 a	 key	
pair	 used	 for	 logging	 in	 and	 managing	 a	 docker	 cluster.	 Currently	 they	 key	
pair	 is	 only	 used	 by	 kubernetes	 	

Key
This	 class	 represents	 a	 key.	 This	 key	 can	 be	 used	 to	 either	 login	 to	 a	 VM	
created	 by	 the	 provisiner	 or	 by	 the	 VM	 to	 allow	 the	 user	 to	 login	 to	 the	
VMs	 from	 the	 machine	 the	 keys	 correspond	 to.	 	

KeyPair This	 class	 hold	 the	 pair	 of	 public	 private	 keys.	 The	 keys	 may	 be	 used	 for	
logging	 in	 VMs.	 	

KeyType This	 enu	 specifies	 if	 a	 key	 is	 private	 or	 public	 	

KeyValueHolder This	 is	 a	 generic	 class	 that	 hold	 key-‐value	 pairs.	 It's	 main	 usage	 is	 to	 hold	
abstract	 types	 such	 as	 TOSCA.	 	

OwnedObject This	 is	 the	 base	 class	 for	 users	 to	 own	 resources.	 Many	 classes	 extend	 this	
class	 	

PlanRequest This	 class	 represents	 a	 plan	 request	 sent	 to	 the	 planner.	 	

ProvisionReques
t

This	 class	 is	 a	 holder	 for	 the	 the	 object	 IDs	 that	 are	 required	 by	 the	
provisioner	 to	 request	 for	 cloud	 resources.	 	

ProvisionRespon
se This	 class	 represents	 a	 description	 of	 provisioned	 resources	 	

Script This	 class	 represents	 a	 simple	 script	 that	 can	 run	 on	 a	 provisioned	 VM.	 	

User This	 class	 represents	 a	 user.	 	

