

Page 1 of 43

D2.5 Technical
Description of the
SIDE Subsystem

1.1.1.1

Software Workbench for Interactive, Time Critical and Highly self-adaptive Cloud
applications

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 643963 (SWITCH project).

Start date of project: 01.02.2015. Duration: 36 months until 31.01.2018

*Dissemination Level

PU Public

CI Classified, information as referred to in Commission Decision 2001/844/EC.

CO Confidential, only for members of the consortium (including the Commission
Services)

**Type

R Document, report (excluding the periodic and final reports)

DEM Demonstrator, pilot, prototype, plan designs

DEC Websites, patents filing, press & media actions, videos, etc.

OTHER Software, technical diagram, etc.

Due Date: 31.07.2017

Delivery: 31.07.2017

Lead Partner: CU

Dissemination Level*: PU

Type**: R

Status: FINAL

Approved: All partners

Version: 1.0.1

643963– SWITCH Dissemination level: PU

Page 2 of 43

Contributors

The contributors to this deliverable are listed below.

Contributor Role

Matej Cigale, Polona Štefanič, Andrew Jones

(CU)

Editors

Matej Cigale (CU), Polona Štefanič (CU), Spiros

Koulouzis (UvA), Sandi Gec (UL), Andrew

Jones (CU), Ian Taylor (CU)

Authors

Paul Martin (UvA), Rui Amor (MOG), George

Suciu (BEIA), Vlado Stankovski (UL)

Internal reviewers

Document History

Version Date Author Description

0.0.1 22 May 2017 A Jones, M Cigale Initial outline/synopsis

0.1 18 June 2017 A Jones, M Cigale,

P Štefanič

Moved to Google Docs; assembled multiple

sections …

0.2 26 June 2017 A Jones, M Cigale,

P Štefanič

First draft available for review.

0.3 7 July 2017 P Štefanič Convert Google Doc to Word Document for

tracking changes.

0.4 10 July 2017 P Štefanič Reorganization of the deliverable.

0.5 17 July 2017 P Štefanič Generating Dynamic Smart Templates

0.6 18 July 2017 M Cigale Revision

0.7 18 July 2017 P Štefanič Revision and submission for internal review

0.8 20 July 2017 M Cigale Incorporated reviewers’ feedback

0.9 21 July 2017 P Štefanič Minor revisions

0.10 24 July 2017 M Cigale Incorporated additional reviewers’ feedback

0.11 27 July 2017 M Cigale, A Jones Incorporated Cardiff internal review feedback

0.12 27 July 2017 M Cigale, A Jones Executive summary; minor updates

1.0 28 July 2017 M Cigale, A Jones Minor updates; candidate version for delivery

to European Commission

1.0.1 30 July 2017 A Jones Minor updates; final version for delivery to

European Commission

Keyword list

Component-based software engineering, TOSCA, Dynamic Smart Templating System, QoS

modelling

643963– SWITCH Dissemination level: PU

Page 3 of 43

Table of Contents
Executive Summary ... 4

1 Introduction ... 5

2 Role of the SIDE Subsystem within the SWITCH platform .. 6

2.1 Component-based and co-programming software engineering in SIDE 6

2.2 Relationship of SIDE to DRIP & ASAP subsystems .. 8

3 Technical implementation of SIDE .. 9

3.1 SIDE internal architecture and technologies ... 10

3.2 Dynamic behaviour and internal communication in SIDE: application walk-through 13

3.2.1 Component composition .. 16

3.2.2 Application composition .. 18

3.2.3 Instance management view .. 20

3.3 Dynamic Smart Templates .. 21

3.3.1 The Dynamic Smart Templating (DST) APIs .. 23

3.3.2 The Dynamic Smart Templating Form Generator ... 26

3.4 Integration of SIDE and DRIP subsystems ... 28

3.5 Integration of SIDE and ASAP Subsystem ... 31

4 Non-functional requirements in SWITCH SIDE .. 32

4.1 Assisting the user in choosing among conflicting NFRs .. 32

4.2 Quality of Service Models for informed NFR monitoring .. 33

5 Agenda for the final phase of SWITCH ... 35

5.1 Usability evaluation approach ... 36

6 Summary ... 38

6.1 Software functionality in public releases .. 38

6.2 Innovation .. 40

Bibliography... 41

Abbreviations ... 42

643963– SWITCH Dissemination level: PU

Page 4 of 43

Executive Summary

In the SWITCH platform, the SIDE (SWITCH Interactive Development Environment) sub-system is

responsible for providing the front-end to the software developer which supports the entire time-

critical cloud software life-cycle: it enables the creation, deployment and management of applications

on the SWITCH platform. It works in conjunction with the DRIP (Dynamic Real-time Infrastructure

Planner) and ASAP (Autonomous System Adaptation Platform) subsystems in order to provide a

novel application-infrastructure co-programming software development metaphor, in which the

developer’s real-time application and the infrastructure are developed together, specifying

performance and other non-functional requirements.

A number of key developments have been necessary in order to realise the SIDE subsystem, the

“look-and-feel” of which has been discussed in previous deliverables. The present deliverable

describes these key developments:

• An internal SIDE architecture which allows a responsive Web browser-based user interface

to interact with complex state information regarding an application that is under

development or deployed. State-of-the-art technologies such as EmberJS are used to

facilitate this.

• A Dynamic Smart Template (DST) concept, which leverages the TOSCA (OASIS Topology

and Orchestration Specification for Cloud Applications) standard, and provides a pluggable

architecture for adding custom forms and GUIs for application components, allowing

SWITCH application GUIs to be completely decoupled from the Dashboard provided by the

SIDE subsystem.

It has also been necessary to extend the TOSCA standard as an exchange mechanism between the

SIDE, DRIP and ASAP subsystems, supporting exchange of non-functional requirements,

configuration information, etc. This is described briefly here, but has already been described in detail

in an earlier deliverable (D2.4).

In addition to the core SWITCH functionality, experimentation has taken place in the following areas,

and experimental integration of these features into SIDE will be undertaken in order to assess their

effectiveness in relation to development of the SWITCH Use Cases:

• Use of Pareto front techniques to help users to choose their preferred trade-off between NFR

constraints, which will be integrated into the SIDE system

• Automatic creation of Qualitative Metadata Markers (QMMs) which can be used to inform

the Quality of Service model available to the SIDE system and identify the parameters

which have the greatest influence on an application’s QoS for a given software component.

This deliverable explains these developments and experiments; it summarises the integration of SIDE

with the other SWITCH components; and it describes how SIDE will be used, in conjunction with

DRIP and ASAP, in the forthcoming phase when the SWITCH Use Cases will be fully developed

and deployed using the SWITCH platform.

643963– SWITCH Dissemination level: PU

Page 5 of 43

1 Introduction

The following deliverable has been prepared as part of the SWITCH project Work Package 2 (WP2)

tasks 2.4 (Time critical software co-programming tool) and 2.5 (The front end for testing, monitoring

and steering). Its primary aim is to describe the internal architecture of the SIDE sub-system, but

because SIDE interfaces to all sub-systems, it also describes the interfaces between SIDE and ASAP,

and between SIDE and DRIP. It therefore needs to be read in conjunction with other deliverables for

a full picture of the overall SWITCH architecture. A secondary aim is to provide a more general

progress report on the SIDE system and to provide an update on material introduced in Deliverable

D2.4 [1]: how the design and implementation of the SIDE GUI has developed since the time of writing

of D2.4 [1], and research work that has been undertaken, especially in regard to specification of Non-

Functional Requirements (NFRs), and how this will be further incorporated in SIDE during the

remainder of the project.

To fully describe the SIDE sub-system, we provide an overview of the internal architecture, the

operations, role and position of SIDE within the SWITCH system. To this end, the SWITCH user’s

perspective is included (i.e. the perspective of someone wanting to develop, deploy and manage an

application using SWITCH), describing features and the co-programming model supporting the entire

application life-cycle of time-critical cloud applications and services.

A recent key development has been the introduction of a so-called Dynamic Smart Templates (DST)

system. The goal of this system is to provide a pluggable architecture for adding custom forms, GUIs

and their corresponding actions for application/software components. The SIDE interfaces for

defining the application components, the automatic form generation and external service workflow

integration completely decouple SWITCH application GUIs from the SIDE Dashboard. Developers

can develop a GUI component and Web form independently and then integrate seamlessly with SIDE

when it is ready for integration.

The DST concept is based on the Topology and Orchestration Specification for Cloud Applications

(TOSCA [2]) standard, which presents a language and terms to describe a topology of cloud based

web services, their components and relationships. The aim of this approach is to develop a

functionality that supports auto generation of fully functional forms based on a TOSCA specification

from application/software components. TOSCA is also used as the exchange mechanism between

SWITCH components, having been extended to represent the non-functional requirements and other

SWITCH-specific information which needs to be exchanged between these components.

The rest of the deliverable is structured as follows. Section 2 explains the role of the SIDE subsystem

in supporting component-based and co-programming software engineering, and positions SIDE

within the SWITCH environment. Section 3 presents the internal architecture and technical

643963– SWITCH Dissemination level: PU

Page 6 of 43

implementation of the SIDE subsystem. The dynamic behaviour of the SIDE system is illustrated by

a walk-through of the application life-cycle. We include a description of the Dynamic Smart Template

(DST) concept and show how DSTs are used within the software engineering process. The RESTful

APIs which underpin the technical integration of SIDE with the DRIP and ASAP subsystems are also

explained. Section 4 concentrates on two specific aspects of non-functional requirements: how we

can further exploit the TOSCA extensions to deal with NFRs which were described in D2.4 and are

currently used in the SWITCH system, and a method for accumulating Qualitative Metadata Markers

that can inform the specification and use of NFRs. TOSCA is already used in SWITCH to exchange

information, including NFRs, but we explain in this section how we plan to extend SIDE on an

experimental basis to help users select between conflicting NFRs using a Pareto front concept, and to

allow monitoring data to inform the selection and use of NFRs. Section 5 presents the agenda for the

next phase of the SWITCH project, from the SIDE perspective, especially in relation to how the

usability of SIDE will be evaluated. Section 6 concludes with a summary of SIDE software

functionality in the public releases of SWITCH, and of the key innovations.

2 Role of the SIDE Subsystem within the SWITCH platform

2.1 Component-based and co-programming software engineering in
SIDE

For time critical applications, such as the SWITCH use cases provided by BEIA [3], MOG [4] and

WT [4] it is crucial and necessary that they operate in real-time, which means that these cloud

applications need to be designed in such a way that they offer reliability, robustness, availability, and

dependability. Hence, a successful deployment of real-time systems depends greatly on low

development costs, a short time-to-market, and a high degree of configurability and Quality of Service

(QoS) and Quality of Experience (QoE). This is where Component-Based Software Development

(CBDS) can be of a great advantage. The introduction of CBSD into real-time and embedded systems

development offers significant benefits, including [5]:

• Rapid development and deployment: Designed and verified components can be reused

across applications, offering a reduction in development cost and time-to-market.

• Reduction of complexity: Software for a specific application can be configured by reusing

components chosen from an existing library.

• Design evolution: Components can be replaced or added to the system as needed, allowing

for continuous software/system development and co-programming.

• Increased reliability and maintainability: Each component can be tested independently,

making problems easier to isolate and fix. In addition, bug fixes can benefit many projects,

and reused components tend to be more stable and mature than any new development.

643963– SWITCH Dissemination level: PU

Page 7 of 43

• Higher developer efficiency: Each development team can focus on its own specialized

task—domain experts can concentrate on creating components, and integration experts on

assembling those components into products [5].

In designing the SWITCH IDE, CBDS principles were followed, motivated by the above reasons.

Consequently, the SWITCH IDE provides a software developer the ability to build entire (multi-tier)

cloud applications from scratch by creating components and placing them on the SIDE canvas. Co-

programming in SWITCH – programming infrastructure and requirements at the same time as

application functionality – enables the developer to link behavioural properties, such as QoS

attributes/constraints and monitoring requirements (throughput, latency, upload time, etc.) and

adaptation and infrastructure requirements that allow the user to expose exactly how and where they

want SWITCH to support their application at run-time. By placing components and related properties

on the SIDE canvas, the software engineer can create a graph representing the entire, fully functional

application, ready for planning, deployment and execution in the cloud infrastructure [1].

Besides creating components, software developers can also define the monitoring metrics, QoS and

QoE constraints linked to those metrics, and also reconfiguration policies that can link to metrics,

constraints and components. During the development phase each element (application component,

dataflow link, quality constraint) is placed on the GUI and linked to the component to which it relates.

In Figure 1, a screenshot of a SIDE GUI is presented. The menu on the left allows users to choose the

application components which have been created, quality constraints, monitoring metrics drag and

drop those components to the canvas, and link them together as required.

Figure 1: Creating application logic by connecting components and their QoS constraints and

requirements on the SIDE GUI.

643963– SWITCH Dissemination level: PU

Page 8 of 43

A more detailed description of a SIDE GUI which shows the phases of the application lifecycle along

with a composition graph in a development and deployment phases are presented in D2.4 [1].

2.2 Relationship of SIDE to DRIP & ASAP subsystems

SIDE is the user-oriented Web interface that is provided to SWITCH users to enable them to interact

with the rest of the components. It is built around the idea that simply defining the functionality of

the system for designing distributed applications is no longer enough. Other requirements must be

considered. The developer must make sure that an application not only performs the required

function; an application must satisfy Quality of Service (QoS) constraints and, from the end-user’s

perspective, it must provide a satisfactory Quality of Experience (QoE). Although QoE and QoS are

related, QoE is particularly challenging to measure. However, QoS and QoE are important metrics

by which the success of a deployed application must be judged.

SIDE was designed with these constraints in mind. It enables the user to link up application

components, each of which provides a certain element of functionality to the system. However, each

component comes with a large set of additional tools that enable the user to specify the non-functional

requirements, add monitoring or additional GUI functionalities.

Most of the functionality of the SIDE subsystem represents other parts of the SWITCH subsystems.

For example,

• The DRIP Planner [6] [7] takes the developer’s requirements into account to create a plan

that returns the types of virtual infrastructure provided to the user and the position of

components on these machines. The constraints are bound to an application component and

are integrated inside TOSCA. (TOSCA is the de facto exchange format for SWITCH

components, and more detail of how TOSCA has been adapted for use in SWITCH is

provided in an earlier deliverable (D2.4).)

• The DRIP Provisioner [6] [7] can take this plan and provision machines on public or private

clouds for the application with the right operating system and the interstitial network

configured between machines in different data centers.

• The DRIP Deployment Agent [6] [7] can then set up the environment that is required for the

system to operate it, bind several of machines together in a cluster, deploy specific services

that are part of the SWITCH ecosystem and then deploy containers or other applications on

the required machines.

The SIDE/DRIP integration is straightforward, because the steps from one step to another are well

defined and cannot overlap or be taken in a different order. This makes the SIDE/DRIP integration

643963– SWITCH Dissemination level: PU

Page 9 of 43

circular. When the application is deployed the developer can take the results into account and change

some of the constraints of the system, re-plan the infrastructure and start a new deployment cycle.

The other part of SWITCH – ASAP – implements monitoring with alarm triggers, application

modelling, and decision making [8] [9] [10]. Monitoring [8] and alarm triggers [9] are bound to the

application components and can be changed during the creation of the applications. This information

is also provided as part of the TOSCA description and submitted to the Monitoring component that

uses it to set up the monitoring and alarms.

During the execution of the system, each component is monitored and should a component experience

a violation, it can send an alarm to SIDE that reports this to the user so that he/she can take specific

actions. These actions leverage the DRIP module to enable Start, Stop and Create actions on a

container. The functionality is exposed as an example of the DST functionality (Section 3.3).

Alternatively, the user can choose to defer the decision to adaptation module [10].

SIDE also provides the developer with an insight on requirements of the components he/she is using

and provides hints on how he/she can provide a better performance of the application. This is

accomplished by displaying the result of the modelling that is part of ASAP so that the user can have

a better understanding what parameters affect the performance of the system (Section 4.2).

3 Technical implementation of SIDE

In this Section we commence by explaining the static architecture of the SIDE subsystem, and the

technologies used. We then provide a SIDE-centric “walk-through” of a sample application (related

to the MOG Use Case), from inception through to deployment. Dynamic Smart Templates (DST) are

presented separately, and their role in a deployed system is explained. In the last two subsections we

explain the RESTful APIs which underpin the integration of SIDE with the DRIP and the ASAP

subsystems.

643963– SWITCH Dissemination level: PU

Page 10 of 43

3.1 SIDE internal architecture and technologies

Figure 2 SIDE Architecture

The SIDE internal architecture is composed of three parts: the front-end is implemented using

EmberJS; the back-end, which manages current SIDE state and provides APIs for communication

with other SWITCH components; and the database, which stores persistent information needed by

the front- and back-ends.

The front-end is implemented using EmberJS, with the central graph generation being facilitated by

JointJS. The JointJS library takes JSON input that contains all the elements of the graph (the SWITCH

Components, properties etc.) with their location and visual effects and the connections between them.

The rest of the communication between the front-end and back-end is achieved by REST calls with

JSON as the exchange format. For instance, when a new component is dragged to the canvas a REST

API switchcomponentinstances is called with the location and parameters of the component. The

back-end creates a new instance of the component in the DB. If the component has associated

parameters, instances of them are also created and linked to the component. The graph is updated

with the new component instance and redrawn.

643963– SWITCH Dissemination level: PU

Page 11 of 43

From the Django point of view these APIs are basic views that display or take JSON data. The rest

of the APIs between the frontend and backend are shown in Table 1. All the APIs require Token

Authentication, so they are user-specific. Missing from the table are the DST APIs, that are described

in greater detail in section 3.3.

Table 1: Restful APIs between back-end and front-end.

Function name method Description

switchapps GET

POST

Set of methods deals with managing the application. It

enables creating and updating from TOSCA, validation,

planning, provisioning and deploying the application and

enables storing the application to the Knowledge Base.

switchappinstances GET Returns the instances of the application.

switchcomponents GET Returns the appropriate components in the left-hand menu

that can be added to the application.

switchcomponenttypes GET Returns the properties type components for component

creation view.

switchcomponentinstance

s

GET

POST

A set of methods dealing with creating and displaying

components.

switchcomponentports POST Creates the component ports

switchdocuments GET

POST

Deals with creating and managing credentials for various

systems.

switchservicelinks GET

POST

Creates and returns links between the components and

manages component links

switchnotifications GET

POST

Enables the posting of notifications to the user. Functions

as Alarm trigger endpoint.

switchartifacts GET Returns all the components available in the system

switchrepositories GET Returns the available repositories.

api/switchapps/{appID}/

graph'

GET

POST

Deals with displaying and storing the application graph

api/switchappinstances/

{appInstanceID}/graph

GET

POST

Deals with displaying and storing the application instance

graph

api/switchcomponents/

{componentID}/graph

GET

POST

Deals with displaying and storing the component graph

643963– SWITCH Dissemination level: PU

Page 12 of 43

The back-end stores all its data in a database, in our case this is MySQL. The creation of the data

tables and communication is facilitated by Django. The communication between the back end and

database is MySQL protocol over TCP. Django offers special functions to create the tables in the

database. The tables of the database are shown in Figure 3.

Figure 3 SIDE Database models

643963– SWITCH Dissemination level: PU

Page 13 of 43

3.2 Dynamic behaviour and internal communication in SIDE:
application walk-through

Figure 4 SWITCH application life-cycle: development, provisioning and runtime control.

This section provides a walk-through of the entire co-programming life-cycle shown in Figure 4, from

the application developer’s point of view. The SIDE GUI provides the user with the ability to drag

and drop components onto a graph canvas, allowing the designer to build up a graph representing

both the functional and network components that belong to an application, so that an application

workflow can be defined. The user may also drag, drop and link Non-Functional Requirements and

Quality-related properties. This allows the user to expose exactly how and where they want SWITCH

to support their application at run-time, which provides a means of identifying QoS/QoE attributes,

monitoring requirements, reconfiguration and adaptation abilities/requirements and infrastructure

requirements. Figure 5 shows a list of graph Components, Properties and Provisioned Infrastructure

and DST icons that are represented in the GUI. A component is the basic building block of an

application, created by a third party. An example would be MOG’s Proxy Transcoder. Properties are

the co-programming archetypes available in SWITCH such as QoS constraints for the system;

different hardware requirements (for example the amount of ram the user wants to specifically reserve

for the system); monitoring parameters and alarm settings that enable the user to set up the monitoring

system. DST is the UI creation component that enables rapid creation of interfaces for components.

643963– SWITCH Dissemination level: PU

Page 14 of 43

(For a detailed explanation of DSTs, please refer to Section 3.3.) After the planning step, Provisioned

Infrastructure icons are created on the canvas that show the VMs that will be used by the system (once

the provisioning step has been performed).

Figure 5 Graph elements present in SIDE used in application design and provisioning.

Figure 6 shows a screenshot of the initial interface of the SIDE GUI. The menu on the left allows

users to find additional components to drag to the system. When a component is added to the Canvas

the Properties associated with it are also displayed on the canvas. (To facilitate clarity of the image

we removed some Properties.)

The image includes VMs and SDNs that were planned and provisioned by DRIP. Planning and

provisioning needs the QoS Constraints component so it can complete its work. The monitoring server

can be automatically added to the system if there is at least one monitoring agent present.

Finally, the “Director” Component is associated by the DST Service component that enables the user

to access its functionality. In this example, it would be selecting the stream that would be displayed

to the viewers of the stream.

643963– SWITCH Dissemination level: PU

Page 15 of 43

Figure 6 Defining application logic as a graph using the SIDE GUI.

The SIDE GUI has three main views that represent each of the three main phases of a SWITCH

application: component development, application development with provisioning, and operation, as

can be seen in Figure 7. Each of the main phases will render the application graph in a similar fashion,

providing the user with a consistent understanding of how his or her application is configured, but

with elements of the graph highlighted or manipulated in a way relevant to the current phase of

development.

Figure 7 SWITCH workbench welcome screen.

643963– SWITCH Dissemination level: PU

Page 16 of 43

Figure 8 SIDE– Application view highlighting a sub-view for component description.

The three phases and their corresponding sub-views (for example the component details sub-view

depicted in Figure 8) allow users to provide information in an iterative way, refining and extending

the information provided in previous views by previous users, in such a way that at the end of each

stage, SIDE has collected all the information necessary to be passed to DRIP or ASAP to initiate the

following stage.

3.2.1 Component composition

Figure 9 SIDE– Component composition view with QoS constraint parameters sub-view.

Component composition creates the components that can then be connected in the application view.

Here the developer can specify some parameters of the system such as what metrics can be monitored

643963– SWITCH Dissemination level: PU

Page 17 of 43

or what is the QoS constraint of the component. This part should be done by the component developer,

as it requires in-depth understanding of the component and its features. The person describing the

component is expected to know, for instance, what is the QoS metric or hardware constraints (Figure

9).

Part of the resulting YAML (which, in turn, is part of the TOSCA produced by the system) is shown

below:

node_templates:

 "fdd7fa70-cf54-4fca-8b5b-0763bd3676a5":

 type: "Switch.nodes.MonitoringAgent"

 properties:

 agent_id: null

 probes:

 CPU_Probe:

 active: true

 metrics:

 cpuTotal_metric:

 thresholds:

 threshold_0:

 operator: greater_than

 value: 80

 type: double

 name: cpuTotal

 unit: "%"

 static: false

 name: CPU

 "57ff2645-808b-4572-952b-3d2c74f5e984":

 artifacts:

 bb_image:

 type: "tosca.artifacts.Deployment.Image.Container.Docker"

 file: null

 repository: SWITCH_docker_hub

 requirements:

 - monitored_by: "fdd7fa70-cf54-4fca-8b5b-0763bd3676a5"

 - host:

 node_filter:

 capabilities:

 host:

 cpu_frequency: "2 GHz"

 mem_size: "2 GB"

 num_cpus: 2

 disk_size: "300 GB"

643963– SWITCH Dissemination level: PU

Page 18 of 43

Note that not all the values are filled in, as these are the values of the system before deployment, so

some values (such as agent_id) are null. The Monitoring agent and the Component are split into

separate nodes because they are treated like that by the system. "57ff2645-808b-4572-952b-

3d2c74f5e984" is the unique ID of a component. Similarly, "fdd7fa70-cf54-4fca-8b5b-

0763bd3676a5" is the UID of the monitoring agent that can then be referenced by the main

component. Here the component types are "tosca.artifacts.Deployment.Image.Container.Docker" for

the main container image (defined in TOSCA standard) and "Switch.nodes.MonitoringAgent" for the

monitoring agent (defined by the SWITCH system); these inform the system of what kind of node it

is dealing with. Properties of the monitoring agent are specific to the monitoring system and are

specified so as to conform to JCatascopia requirements. It will be noted that we include some NFRs

for the main component – cpu frequency, etc.

3.2.2 Application composition

In the next step, the developer takes the components and connects them to create the final application

as seen in Figure 6. This is the core of the SWITCH development. The user would search for the

components he wants to use from the available components, as seen in Figure 8. The available

components are queried from the database according to the permissions of the user. The user has

access to public components and the components (s)he created.

 Figure 10 Adding InputDistributor component to application canvas.

After this (s)he can add additional components and connect them together (Figure 11). This creates

an association of the components in the back-end that is defined in TOSCA. In order to connect the

643963– SWITCH Dissemination level: PU

Page 19 of 43

components an egress must be defined for the component and another component must possess a

compatible ingress. Connecting these components is subjected to validation based on their types.

 Figure 11 Connecting components.

He/she can update the constraints to suit his needs increasing their performance etc. (Figure 12) This

is also the view that enables the developer to Verify, Plan, Provision and Deploy the application (see

Section 3.4 for further details). Each step of the creation of the system can add additional components

to the canvas. Validation can notice that the monitoring server is missing while there are monitoring

probes and adds it. Planning adds VMs and their connections to the components. Provisioning adds

additional information to the VM Sub-View such as the IPs of the machines, etc., until the final result

is something similar to Figure 8.

Deployment is the final step of the application composition. After it is complete there is a new

instance of the system available and ready for use. Further actions on the application can be observed

in the Instance Management View.

643963– SWITCH Dissemination level: PU

Page 20 of 43

Figure 12 Changing properties of the component.

3.2.3 Instance management view

Figure 13 SIDE – instance management view with QoS constraint parameters sub-view.

The Instance management view (Figure 13) shows the state of the system. It enables the user to

monitor the state of the system and access the DST functionalities that were developed. This view is

important, as it enables control of multiple instances of the same application – for instance, multiple

643963– SWITCH Dissemination level: PU

Page 21 of 43

videoconferencing services that service different users across the world with different requirements

and network characteristics.

Monitoring, processing of alarms, and steering of a deployed application is facilitated by Dynamic

Smart Templates, which we shall now cover in detail.

3.3 Dynamic Smart Templates

The goal of the Dynamic Smart Template (DST) system is to provide a pluggable architecture for

adding custom forms and GUIs for application components. The SIDE interfaces for defining the

application components, the automatic form generation, and external service workflow integration

completely decouple SWITCH application GUIs from the Dashboard. Accordingly, developers can

develop a GUI component and Web form independently and then integrate seamlessly with SIDE

when it is ready for integration. Example integrations using this approach include:

• ASAP Integration 1: Network metrics monitoring form: Latency, throughput, upload time,

upload speed, RTT, hops

• ASAP Integration 2: Container-based metrics monitoring form: CPU, Memory, reads/writes

Customized application GUIs can be integrated using this approach e.g.:

• the MOG Video Viewer

The aim of the approach is to develop a functionality that supports auto-generation of fully functional

forms based on TOSCA/YAML definition from application components. The TOSCA/YAML

definition must cover GUI components including their type and optionally default values, REST-

based requests linked to components (usually on buttons) and be able to include external complex

components such as monitoring graph component. An important aspect that must be covered is the

data delegation between subsystems.

The input GUI is a form based on a YAML specification and resulting output GUIs is delivered from

an external Web GUI, e.g. the monitoring Web interface, which is iFramed (another HTML form

(web page) is embedded into Web site of the SIDE GUI) into the dashboard. Data can also come in

natively into the dashboard and logged to a text area (like a console log). In the future, in the context

of the SWITCH Use Cases, we may support other native GUI components and ingest real time data

also. Figure 14 shows the general scheme of the system.

643963– SWITCH Dissemination level: PU

Page 22 of 43

Figure 14: State diagram of the DST system.

The flow proceeds as follows:

• DST YAML (TOSCA) template component is written and stored in SIDE

• DST application component is registered (attached) to a component (i.e. a container)

• On running the application, the DST is translated using EmberJS into a Web Form.

• When the user fills in the form and hits “Submit”, SIDE sends FORM POST to the backend,

which proxies it to the external service to configure the Web interface. It outputs an endpoint

where the Web interface or data is.

• SIDE renders the GUI from the URL in an iFrame or outputs the data into a text area,

depending on the configuration.

In order to facilitate this flow several REST APIs are required, presented in Figure 15.

643963– SWITCH Dissemination level: PU

Page 23 of 43

Figure 15: Schema of the APIs provided by the DST System.

3.3.1 The Dynamic Smart Templating (DST) APIs

Table 2 summarizes the services available by DST. The DST Services endpoint is the first step of the

DST. It is the part of the GUI where the user defines the YAML that will be used to generate the

forms and the endpoints of the REST Calls that will be used. The user specifies this in a special

template component that is connected to the core component.

643963– SWITCH Dissemination level: PU

Page 24 of 43

Table 2: Restful APIs between SIDE and ASAP subsystems.

Function name method Description

dstService GET Get the YAML that is needed to create the form

dstInstance GET Once a new Form is generated a new DST instance

is instantiated to rack the plugin.

dstRequest POST Takes the data collected by the form and forwards

it to the destination service.

dstUpdate GET

PUT

A service receives a token and an endpoint where

it can publish updates. These updates can then be

queried by the from and displayed.

Figure 16: SIDE adding and editing the DST_service.

The YAML must follow certain specifications for it to work. Each component must be defined by a

label, type, value (Default Value), name (name that will be parsed by the service) and optionally a

placeholder that displays a hint to the user. Actions must contain the label, type and request URL.

643963– SWITCH Dissemination level: PU

Page 25 of 43

components:

component:

 label: »Name«

component_type: text_field

value: “Name”

name: name

placeholder: “Random Name”

component:

 label: »Ticker«

component_type: text_field

value: 10

name: ticker

placeholder: “Countdown value”

 component:

 label: »Console«

component_type: text_box

value: “”

name: conslole

placeholder: “”

actions:

 action:

label: »Run«

action_type: POST

action_request: loksorr-django-tut.appspot.com/counter/

output_component: console

Each time a user creates a new instance of the form, a new entry is created in the dst_instance DB,

using the dst_instance identifier table to track the plugin. Once an instance is created a user can

interact with the DST form and customize the plugin.

The DST_Request API is a REST call that takes the data collected by the form and forwards it to the

destination URL. It stores the response of the call (assumed to be a string containing the URL to the

developed webpage for the request.

{ "dst_url" : "loksorr-django-tut.appspot.com/counter/",

 "dst_instance_id" : "From another API"

 "action_type" : POST

 "dst_payload" : {

 "name" : "matej",

 "ticker" : 200,

 "container_id" : "Bla",

 "ip_address" : " Bla",

 "callback_dst_id" : "Bla",

 "callback_token" : " Bla",

 "callback_url" : " Bla",

 "dst_instance_id" : 1

}

}

The Update API has two endpoints. This is the POST endpoint where the external service can submit

its results based on the callback_dst_id, callback_token and callback_url values of the system. This

643963– SWITCH Dissemination level: PU

Page 26 of 43

result is then polled by the form and displayed in the component denoted by the output_component

tag.

3.3.2 The Dynamic Smart Templating Form Generator

As can be seen in Figure 13, the user defines YAML for a specific component by double clicking the

DST component (light blue rectangular on the canvas). After that, a right menu slides out and shows

the additional properties that can be done for the specific component. In a text area below properties

user can paste YAML and by clicking the button Generate Form (see Figure 14) a Form Template is

generated out of a YAML (see Figure 15).

Figure 17: By double clicking the light blue DST component on the canvas a right menu slides out

with possibility for the user to insert YAML into text area below properties.

643963– SWITCH Dissemination level: PU

Page 27 of 43

Figure 18: By pressing the button Generate Form a Form Template on the right menu opens that is

generated from a YAML representation

643963– SWITCH Dissemination level: PU

Page 28 of 43

3.4 Integration of SIDE and DRIP subsystems

DRIP provides the planning, provisioning and deployment functionality to SWITCH and by

extension to the user via SIDE. The exchange format between DRIP and SIDE is TOSCA, that

contains the current state of the system at each step. The steps do not overlap, as can be seen from the

sequence diagram in Figure 19.

Figure 19 SIDE– DRIP sequence diagram.

This section contains a list with brief description of Restful APIs that connect SIDE and DRIP

subsystems. Table 3 contains the list of Restful APIs among SIDE and DRIP. For each API the

following parameters are listed: function name, short description, HTTP method (e.g. GET, PUT),

643963– SWITCH Dissemination level: PU

Page 29 of 43

input and output parameters. A more detailed explanation of the system can be found in the respective

deliverables and in the Integration plan document delivered to the Commission [11] .

Table 3: RESTful APIs between SIDE and DRIP subsystems.

Function name methods Description

AnsibleOutputController GET

DELETE

GET

GET

DELETE

GET

This controller is responsible for showing the

output from ansible executions.

BenchmarkController GET

DELETE

GET

DELETE

GET

This controller is responsible for handling

cloud benchmark tests like sysbench.

CloudConfigurationController0 POST

POST

This controller is responsible for handling

cloud credentials used by the provisoner to

request for resources (VMs).

CloudCredentialsController POST

DELETE

GET

GET

DELETE

GET

POST

This controller is responsible for handling

CloudCredentials. CloudCredentials are a

representation of the credentials that are used

by the provisoner to request for resources

(VMs).

ConfigurationController DELETE

GET

POST

DELETE

GET

This controller is responsible for storing

PlayBook descriptions that can be used by the

planner.

DeployController DELETE

POST

GET

GET

DELETE

GET

This controller is responsible for deploying a

cluster on provisioned resources.

DeployController0 POST

POST

This controller is responsible for deploying a

cluster on provisioned resources.

643963– SWITCH Dissemination level: PU

Page 30 of 43

Function name methods Description

KeyPairController POST

DELETE

GET

GET

DELETE

GET

This controller is responsible for handling user

public keys. These keys can be used by the

provisioner to allow the user to login to the

VMs from the machine the keys correspond to.

PlannerController DELETE

GET

POST

DELETE

GET

GET

POST

GET

POST

This controller is responsible for planning the

type of resources to be provisioned based on a

TOSCA description.

PlannerController0 POST This controller is responsible for planning the

type of resources to be provisioned based on a

TOSCA description.

ProvisionController DELETE

GET

POST

GET

DELETE

GET

This controller is responsible for obtaining

resources from cloud providers based the plan

generated by the planner.

ProvisionController0 POST

POST

This controller is responsible for obtaining

resources from cloud providers based the plan

generated by the planner and uploaded by the

user

ScriptController POST

DELETE

GET

GET

POST

DELETE

GET

This controller is responsible for handling user

scripts. These scripts can be used by the

provisioner to run on the created VMs.

ToscaController DELETE

GET

POST

POST

DELETE

GET

This controller is responsible for storing

TOSCA descriptions that can be used by the

planner.

643963– SWITCH Dissemination level: PU

Page 31 of 43

Function name methods Description

UserController GET

GET

POST

POST

DELETE

GET

This controller is responsible for handling user

accounts.

UserController0 POST This controller is responsible for handling user

accounts.

UserPublicKeysController0 POST This controller is responsible for handling user

public keys. These keys can be used by the

provisioner to allow the user to login to the

VMs from the machine the keys correspond to.

UserScriptController0 POST This controller is responsible for handling user

scripts. These scripts can be used by the

provisoner to run on the created VMs.

3.5 Integration of SIDE and ASAP Subsystem

Figure 20 SIDE– DRIP sequence diagram.

ASAP by necessity is highly coupled to the application. As such the interaction between ASAP and

SIDE is more set-up and reporting-based. The SIDE enables the user to define the parameters for the

monitoring and Alarm triggering components and receives messages form ASAP on reconfiguration

that were done (i.e. location of the services). A list of Restful APIs between SIDE and ASAP is

presented in Table 4.

643963– SWITCH Dissemination level: PU

Page 32 of 43

Table 4: Restful APIs between SIDE and ASAP subsystems.

Function name method Description

getMonitoringInfo GET Get basic monitoring information.

getAvailableMonitoringMetrics GET Get all available monitoring metrics.

applyMonitoringMetric POST Start monitoring the selected

monitoring metric.

getLastMetricValue GET Get last metric value to be shown on a

graph.

stopSinglePod GET Stop selected Kubernetes pod instance

on demand.

getKubernetesPods GET Get all running Kubernetes pods.

getAvailableAsapClusters GET Get the list of all available and running

ASAP cloud clusters.

getAlarmTriggerInput GET Get the input (YAML file) for the

Alarm-Trigger component.

4 Non-functional requirements in SWITCH SIDE

SIDE as part of its development features some novel concepts. We have already described the

Dynamic Smart Template (DST) concept, which decouples application/component-specific user

interfaces from the SIDE GUI. Also, in D2.4 we explained how we have extended TOSCA for use in

SWITCH, in particular so that it can handle Non-Functional Requirements, and this has been further

illustrated in the walk-through presented in the current deliverable. In this Section we mention some

current experimental work that takes forward the NFR-related aspects already incorporated into the

SWITCH platform. We discuss some experimental Pareto front-related work which we plan to

integrate into SIDE before the end of the SWITCH project, to assist the user in selecting NFRs. We

also discuss experimentation that has been undertaken to create QoS models based on Qualitative

Metadata Markers for software components, generated while the components are deployed. Again,

this is something which we plan to integrate into SIDE before the SWITCH project ends. Initial

publications relating to both these experiments have been produced ([12] [13]).

4.1 Assisting the user in choosing among conflicting NFRs

SWITCH uses the TOSCA standard for the application modelling because it is a widely-used

standard, and because it supports the description of the application logic, the ability to use virtual

images and containers as implementation artefacts and enables the description of QoS through

643963– SWITCH Dissemination level: PU

Page 33 of 43

policies and management of the entire application lifecycle including continuous deployment,

integration, monitoring and adaptation [2]. However, besides topology and management aspects, we

also use TOSCA in SWITCH as a means of exchanging Non-Functional Requirements (NFRs) and

other quality constraints expressed by application developers in the design phase, representing generic

requirements such as throughput, latency and memory, and also application-specific requirements

such as minimum frame rate. It should be noted that this is a significant development; in the literature

it is noted that there is a lack of definition of Non-Functional Requirements and of quality constrains

such as those we have needed to address in SWITCH [14] [15].

Recently we have described a novel approach that allows to software engineer to study conflicting

NFRs trade-off possibilities for each application tier or software component during the development

of multi-tier cloud applications. The process is managed by software engineer who is the decision

maker. As an optimization method, we have used the Pareto front decision making method [12]. Our

future work (to be undertaken during the remainder of the project) is in three parts. Firstly, we will

extend the SIDE system on an experimental basis to allow users to visualise and explore this Pareto

front in a manner that is integrated with the SIDE IDE. Secondly, we will further extend our use of

TOSCA so that the conflicting constraints can be represented and trade-offs can be computed

automatically from conflicting NFRs written in TOSCA policies, so they can be used in the automated

deployment to a cloud environment. Thirdly, we will perform experimentation with the providers of

the SWITCH Use Cases in order to assess the usability and utility of this approach.

4.2 Quality of Service Models for informed NFR monitoring

The SWITCH SIDE sub-system as a software engineering tool allows efficient creation of cloud

native applications and micro-services at each stage of their lifecycle. On the SIDE canvas, a software

engineer can create fully operational cloud applications and micro-services by defining software

components (e.g. micro-services, software assets, etc.). In some cases, an individual component can

represent a fully operational stand-alone simple application that can be deployed to the cloud/edge

infrastructure. Furthermore, software components can be suitably combined to form larger, more

extended and fully operational cloud applications.

A question that the developer might have some difficulty answering is: how can one determine which

are the most important Quality of Service parameters, and how do they actually affect performance?

Our second area of research is to address this issue with a novel QoS modelling approach that

additionally equips software components with Qualitative Metadata Markers (QMM). These markers

are part of the adaptation models created in ASAP based on the monitoring data. More information

about these models can be found in respective deliverables [10]. The concept assumes that component

providers will generate these models. To create QMMs, software components or micro-services

should be subject to preliminary testing in a native cloud environment. Those preliminary tests should

consider necessary constraints of a component (e.g. minimum CPU and memory needed), their NFRs

643963– SWITCH Dissemination level: PU

Page 34 of 43

(e.g. level of importance of availability and security needed) and monitoring metrics, such as desired

latency, throughput, upload speed, upload time and so on. QMMs present probabilities relating to the

influence of these metrics or NFRs on the QoS of the software component and QoE of the end user.

As the application is deployed the software engineer can oversee an application’s life-cycle in a

concise manner and change the characteristics of the system if necessary. By continuously monitoring

deployed software components, in our approach there is a continuous supply of probability values

relating to which parameters have the biggest influence on the QoS of the deployed software

component [13]. The concept is presented in Figure 21.

Figure 21: Steps of our augmented deployment system. (1) On SWITCH SIDE software components

are created with defined constraints and NFRs; (2) Software components are deployed to a cloud

environment and monitored; (3) monitoring data and constraints are used by a QoS model that

generates Qualitative Metadata Markers.

Our approach has three steps:

Step 1: Creating a software component / micro-service: The software engineer can create software

components from scratch using the SWITCH SIDE environment.

643963– SWITCH Dissemination level: PU

Page 35 of 43

Step 2: Defining constraints, collecting monitoring metrics for a specific component: Here the

minimal constraints and NFRs for a specific software component are defined. In order to obtain

monitoring metrics, the software component is preliminarily deployed and monitored in the cloud

environment.

Step 3: Creating Qualitative Metadata Markers: Data gathered in Step 2 is fed into a Model Maker

(MM) component. The MM creates the differentials for all pairs of collected metrics. It then compares

the amount of positive correlations (i.e. increasing the metric’s value increases the QoS) and negative

correlations. The QMM of the metric is the number of positive correlations minus the number of

negative correlations. The result is treated as the probability value that determines the parameters (in

our case monitoring metrics, such as throughput or latency or software component constraints) which

have the greatest influence on the application's QoS for the software component [13].

As with the Pareto front techniques, generation and use of QMMs has not yet been fully integrated

into SWITCH; the current status is that we have demonstrated the feasibility of the technique and it

is presented in a workshop paper. Future work in this area to be undertaken during the remainder of

this project is again in three parts. Firstly, we will extend the SIDE system on an experimental basis

to allow users to inspect QMMs and use them to inform specification of QoS requirements. Secondly,

we will establish how these markers can be stored and exchanged using the TOSCA orchestration

standard. Thirdly, we will perform experimentation with the providers of the SWITCH Use Cases in

order to assess the effectiveness of the QMM capture techniques, and their usability and utility as a

source of information to inform the choice of QoS requirements.

5 Agenda for the final phase of SWITCH

The most important remaining priorities in relation to SIDE are as follows:

• Use of the SWITCH system (including SIDE) to support the entire life cycle of the SWITCH

Use Cases entirely within the SWITCH platform

• Addressing any bugs, integration problems, etc., which come to light during these experiments

• Making minor adjustments to SIDE if necessary in order better to support the SWITCH Use

Cases (for example, if it turns out to be unexpectedly difficult to specify a particular QoS

requirement or monitor the relevant components)

• Integration into an experimental version of SIDE of the NFR-related developments described

in Section 4, and engagement with the SWITCH community to evaluate their effectiveness

• Usability evaluation of SWITCH, as perceived through the SIDE GUI, as a means of

supporting the co-programming concept in the context of time-critical cloud applications

643963– SWITCH Dissemination level: PU

Page 36 of 43

This last point is critical, as it is effectively evaluating how successful the project partners have been

in implementing the fundamental SWITCH concept. In the remainder of the present section we shall

discuss approaches that we shall adopt in order to evaluate the usability of SIDE (and hence of

SWITCH).

5.1 Usability evaluation approach

There are many things that should be considered when developing system or software. However, one

of the most important aspects is the usability of a system. This can be considered to fall under the

following headings: learnability, efficiency, satisfaction and errors. Learnability is a degree that

shows how easy a new user can accomplish tasks the first time he uses the software or system.

Efficiency is how quickly users can complete tasks after they are familiar with its use. Satisfaction is

whether users enjoy the design of the software; and errors refers to the number of errors users make

when they use the software, the severity of the errors and how easy they are to recover from.

When testing the SWITCH SIDE software engineering tool for usability we will first compare SIDE

environment with similar software engineering tools that are used for creation of micro-services and

cloud applications such as Juju [16] [17] and Fabric8 [18]. Juju is an open source universal

component-based graphical modelling tool for service oriented architectures and application

deployments. It offers also sets of predefined software assets and relationships and configurations

among them that come with a knowledge of how to properly deploy and configure selected services

in the cloud and relationships among them [17]. Fabric8 is an open source platform that is based on

Docker as virtualization, and Kubernetes as orchestration technology. Fabric8 provides a developer

console for creating, building and deploying micro-services and run and manage them with

continuous improvement [18]. The comparison will be at an abstract level, using human processor

models such as GOMS [19].

In contrast, usability testing is a technique used to evaluate a product by testing on users. In order to

perform usability tests, we will first create some scenarios whereby users will perform a list of tasks,

such as (1) creating a software component on a SWITCH GUI, (2) adding QoS constraints, Non-

Functional Requirements, DSTs, (3) creating the composition, the provisioning graph, etc., and

observing the dashboard with monitoring services and notifications, (4) deployment to the cloud

environment and associated tasks. When users perform tasks, we will observe them, taking notes.

We will use a range of usability testing methods, including as many of the following as proves feasible

in the available time:

• Hallway Testing: using random people to test the website rather than people who are trained

for testing such environments.

643963– SWITCH Dissemination level: PU

Page 37 of 43

• Expert Review: An expert in the field will evaluate the usability of the software engineering

tool. Sometimes the expert is brought to a testing facility, while other times the tests are

conducted remotely and automated results are sent back for review. Automated expert tests

are typically not as detailed as other types of usability tests, but their advantage is that they

can be completed quickly. This is probably the easiest kind of testing to do in SWITCH, as

the Use Cases are well understood by the SMEs that are providing them to the project.

• Questionnaires and Interviews: interviews enable the observer to ask direct questions to the

users. Similarly, the observer can also ask questions by means of questionnaires. The

advantage of questionnaires is that they allow more structured data collection.

• Do-it-Yourself Walkthrough: in this technique, the observer sets up a usability test situation

by creating realistic scenarios. He or she then walks through the work themselves just like a

user would.

• Automated Usability Evaluation: Various academic papers and prototypes have been

developed in order to try and automate website usability testing, all with various degrees of

success. One interesting approach is Justin Mifsud’s USEFul Framework [20].

After performing usability tests, we will compile the information and take note of any issues that

testers had in common. We will consider things such as the amount of time needed to perform a task

in a scenario, number of errors that occurred, and the users’ “happiness” and satisfaction [21].

643963– SWITCH Dissemination level: PU

Page 38 of 43

6 Summary

6.1 Software functionality in public releases

The components of the SIDE subsystem are essentially fully implemented at the time of writing, but

further integration testing and enhancement to be fully compatible with the SWITCH Use Cases will

be necessary in the coming months. The following table summarises the software functionality

available in the two public releases of SWITCH.

Table 5: SWITCH SIDE subsystem functionality in public releases.

Architecture

components

(defined in

D2.3)

Functionality

in V1

Functionality

in V2

Key Performance

Indicators (KPI)

Current status

SWITCH

Workbench

Yes Yes User activities

permitted by

SWITCH

components that can

be conducted via

SIDE

Mostly integrated

with DRIP/ASAP;

some integration

currently being

completed.

Front-end Yes Yes Responsiveness to

user input.

Properties/constraints

supported by DRIP

or ASAP

components

expressible in IDE

Implemented and

performance appears

adequate; full

performance and user

testing to be

completed.

Properties/constraints

can be expressed, but

in some cases

currently only via

free-text metadata

Back-end Yes Yes Integrated with front-

end; TOSCA-based

REST APIs

supported for

interactions with

other SWITCH

subsystems

Internal

database

Yes Yes Provides the required

support to back-end

643963– SWITCH Dissemination level: PU

Page 39 of 43

Architecture

components

(defined in

D2.3)

Functionality

in V1

Functionality

in V2

Key Performance

Indicators (KPI)

Current status

SIDE

Collaborative

Management

System

Yes Yes User management &

project management

implemented;

Partial version

control - changes are

stored, but no roll

back functionality.

Formal

Reasoner/

Verifier

Yes Yes Types of QoS/QoE

constraint that can be

validated;

Capture of un-

satisfiable constraints

prior to submission

of application

specification to DRIP

Partial – some

verification is done,

identifying infeasible

application

deployments, but

rudimentary.

Experiments in

assisting with choice

of NFRs (Pareto

front-based;

Qualitative Metadata

Markers) have led to

methods to be

incorporated in order

to complement the

formal

reasoning/verification

of QoS/QoE

constraints

643963– SWITCH Dissemination level: PU

Page 40 of 43

6.2 Innovation

We have discussed a number of SIDE innovations in the present deliverable. The following table

summarises our key innovations in relation to the current state of the art.

Table 6: SWITCH SIDE subsystem innovations.

Component Current state of the Art Innovation

Application

composition

Many suites provide integrated

facilities for Cloud planning and

provisioning.

SIDE (as part of the SWITCH

platform) is the only application

featuring the ability to combine the

infrastructure requirements and

functionality in the system, realising

the SWITCH co-programming

metaphor.

Dynamic Smart

Templates

There are ways to create UI for

applications and to communicate

with them with REST API

DSTs enable the developer rapidly

develop GUI for testing or control of

his or her applications. Can be used

to interface many different

components in a rapid manner.

The result can be stored inside

TOSCA.

Extending TOSCA

with NFR

There is a lot of research done on

NFR for applications.

Developments in SIDE as part of the

SWITCH platform comprise the first

attempt to codify the logic for

management of NFR inside TOSCA.

Informing the user

what influences the

performance of the

application.

A lot of work is being done on

application modelling.

Specifically, for the purposes of

automatic control.

Our two new approaches described

in Section 4 give the user

information what influences the

performance of a component or an

application, and also the interactions

between the parameters, so that (s)he

knows what parameters of the virtual

infrastructure to concentrate on.

Application

verification

Verification of applications is an

important field in computer

language design, but is a

developing area in relation to

micro service composition tools.

We provide a system for “type

checking” and general deployability

of the connected application

components.

The SIDE subsystem is used in the project together with the other two SWITCH subsystems to

implement the industrial pilot Use Cases. In the last phase of the project, exploiting SIDE within the

integrated SWITCH environment will be highlighted. A detailed exploitation plan and report will be

presented in D6.4 “Report on dissemination, communication, collaboration, exploitation and

standardization V3”.

643963– SWITCH Dissemination level: PU

Page 41 of 43

Bibliography

[1] F. Quevedo, D. Rogers, P. Martin, A. Taal, Y. Hu, A. Jones and I. Taylor, D2.4 Concept

description for application-infrastructure co-programming, SWITCH consortium, 2016.

[2] OASIS TOSCA Specification v1.0, “TOSCA 1.0 (Topology and Orchestration Specification

for Cloud Applications), Version 1.0,” 2013. [Online]. Available: http://docs.oasis-

open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf.

[3] G. Suciu Jr. and V. Suciu, D5.2 Technical and functional specifications for the elastic early

warning system, SWITCH consortium, 2017.

[4] A. Ulisses, P. Ferreira, P. Santo, D. Costa and R. Amor, D5.3 Technical and functional

specifications for the Cloud virtual studio for directing and broadcasting live events, SWITCH

consortium, 2017.

[5] mendix developer, “Best practices for Component-Based Development,” 2 July 2017.

[Online]. Available: https://docs.mendix.com/howtogeneral/bestpractices/best-practices-for-

component-based-development. [Accessed 20 July 2017].

[6] P. Martin, A. Jones, C. Rodrigo, R. Marcos and Z. Zhao, D3.3 Semantic linking model for

SWITCH V2, SWITCH consortium, 2016.

[7] P. Martin, C. de Laat, J. Wang, H. Zhou, Y. Hu, A. Taal, S. Koulouzis and Z. Zhao, D3.4 Drip

Technical Description, SWITCH consortium, 2017.

[8] S. Taherizadeh, J. Trnkoczy, U. Paščinski, M. Breška and V. Stankovski, D4.1 Prototype

runtime monitoring system, SWITCH consortium, 2015.

[9] M. Cigale, J. Trnkoczy, S. Taherizadeh, S. Gec and V. Stankovski, D4.2 Design specification

of the ASAP Subsystem, SWITCH Consortium, 2016.

[10] M. Cigale, J. Trnkoczy, P. Kochovski, T. Salman, S. Gec, U. Paščinski, P. Štefanič, V.

Poenaru and V. Stankovski, D4.3 Technical Documentation of the ASAP Subsystem,

SWITCH project, 2017.

[11] P. Martin and Z. Zhao, SWITCH Integration delivrable, SWITCH Consortium, 2017.

[12] P. Štefanič, D. Kimovski, G. Suciu Jr. and V. Stankovski, “Non-Functional Requirements

Optimisation for Multi-Tier Cloud Applications: An Early Warning System Case Study,” in

The 3rd IEEE Conference on Cloud and Big Data Computing , San Francisco, California,

2017.

[13] P. Štefanič, M. Cigale, A. Jones and V. Stankovski, “Quality of Service models for Micro-

services and their integration into the SWITCH IDE,” in 1st IEEE Workshop on Autonomic

Management of large scale container-based systems, Tuchson, Arizona, 2017.

[14] P. Hirmer, U. Breitenbücher, T. Binz and F. Leymann, “Automatic Topology Completion of

TOSCA-based Cloud Applications,” in GI Jahrestagung, Stuttgart, 2014.

[15] T. Waizenegger, M. Wieland, T. Binz, U. Breitenb{\"u}cher, F. Haupt, O. Kopp, F. Leymann,

B. Mitschang, A. Nowak and S. Wagner, “Policy4TOSCA: A Policy-Aware Cloud Service

Provisioning Approach to Enable Secure Cloud Computing,” in On the Move to Meaningful

Internet Systems: OTM 2013 Conferences: Confederated International Conferences: CoopIS,

DOA-Trusted Cloud, and ODBASE, Graz, Austria, 2013.

643963– SWITCH Dissemination level: PU

Page 42 of 43

[16] Juju, “Juju Docs,” 1 December 2016. [Online]. Available:

https://jujucharms.com/docs/1.25/about-juju. [Accessed 19 July 2017].

[17] K. Baxley, J. De la Rosa and M. Wenning, “Deploying workloads with Juju and MAAS in

Ubuntu 14.04 LTS,” 5 May 2014. [Online]. Available: http://docplayer.net/12356952-

Solution-brief-ca-service-management-service-catalog-can-we-manage-and-deliver-the-

services-needed-where-when-and-how-our-users-need-them.html. [Accessed 18 July 2017].

[18] Fabric8, “Fabric8,” 2 December 2016. [Online]. Available:

http://fabric8.io/guide/overview.html. [Accessed 19 July 2017].

[19] B. E. John and D. E. Kieras, “The GOMS family of user interface analysis techniques:

comparison and contrast,” ACM Transactions on Computer-Human Interaction (TOCHI), vol.

3, no. 4, pp. 320-351, 1996.

[20] J. Mifsud, “USEFul - A Framework To Automate Website Usability Evaluation (Part 1),” 30

January 2012. [Online]. Available: http://usabilitygeek.com/useful-a-framework-to-automate-

website-usability-evaluation-part-1/. [Accessed 18 July 2017].

[21] T. Churm, “An Introduction To Website Usability Testing,” 9 July 2012. [Online]. Available:

http://usabilitygeek.com/an-introduction-to-website-usability-testing/. [Accessed 20 July

2017].

[22] OpenTOSCA, “TOSCA and OpenTOSCA: TOSCA Introduction and OpenTOSCA

Ecosystem Overview,” 8 November 2013. [Online]. Available:

http://www.slideshare.net/OpenTOSCA/tosca-and-opentosca-tosca-introduction-and-

opentosca-ecosystem-overview.

[23] K. Evans, A. Jones, F. Quevedo, D. Rogers, I. Taylor, J. Wang, Y. Hu, H. Zhou, A. Taal, P.

Martin, S. Taherizadeh and J. Trnkoczy, D2.3 SWITCH Architecture Design, SWITCH

Consortium, 2016.

Abbreviations

Abbreviation Expansion

API Application Programming Interface

ASAP Autonomous Self-Adaptation Platform

BEPL Business Process Execution Language

BPMN Business Process Management Notation

CSAR Cloud Service Archive

DRIP Distributed Real-time Infrastructure Planner

GUI Graphical User Interface

643963– SWITCH Dissemination level: PU

Page 43 of 43

Abbreviation Expansion

LQN Layer Queueing Network

MVC Model-View Controller

NFV Network Function Virtualization

OASIS Organization for the Advancement of Structured Information Standards

QoE Quality of Experience

QoS Quality of Service

REST Representational state transfer

SIDE Switch Interactive Development Environment

SDN Software Defined Networking

SLA Service Level Agreement

SWITCH Software Workbench for Interactive, Time Critical and Highly self-adaptive

Cloud applications

TOSCA Topology and Orchestration Specification for Cloud Applications

TSDB Time Series Database

YAML YAML Ain't Markup Language

DST Dynamic Smart Templates

