
Future Generation Computer Systems 56 (2016) 64–76
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

SDN-aware federation of distributed data
Spiros Koulouzis a,∗, Adam S.Z. Belloum a, Marian T. Bubak a,b, Zhiming Zhao a,
Miroslav Živković a, Cees T.A.M. de Laat a
a University of Amsterdam, Institute for Informatics, Amsterdam, The Netherlands
b Department of Computer Science, AGH University of Science and Technology, Krakow, Poland

h i g h l i g h t s

• Software defined networking (SDN) has created unprecedented opportunities for efficient data transfers.
• We present an observable and controllable network model to approach data transfers from multiple sources.
• We develop and implement two algorithms that take advantage of the programmability of the network.
• We introduce an architecture for transparent & adaptive data transfers and enable full exploitation of research infrastructures.
• We assess the improvement of data transfer rates resulting from SDN-enabling Distributed File Access Services (DFAS).

a r t i c l e i n f o

Article history:
Received 31 March 2015
Received in revised form
30 August 2015
Accepted 26 September 2015
Available online 23 October 2015

Keywords:
Data federations
Data transfers
Software defined networking (SDN)
Distributed file access service (DFAS)
Scientific workflows

a b s t r a c t

The introduction of software defined networking (SDN) has created an opportunity for file access services
to get a view of the underlying network and to further optimize large data transfers. This opportunity
is still unexplored while the amount of data that needs to be transferred is growing. Data transfers are
also becoming more frequent as a result of interdisciplinary collaborations and the nature of research
infrastructures. To address the needs for larger andmore frequent data transfers, we propose an approach
which enables file access services to use SDN. We extend the file access services developed in our earlier
work by including network resources in the provisioning for large data transfers. A novel SDN-aware file
transfer mechanism is prototyped for improving the performance and reliability of large data transfers
on research infrastructure equipped with programmable network switches. Our results show that I/O
and data-intensive scientific workflows benefit from SDN-aware file access services.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, data driven approaches in scientific research have
increased the frequency and size of data transfers between geo-
graphically distributed locations. The emergence of the network
programmability through software defined networking (SDN) has
created unprecedented opportunities to enable network provi-
sioning for I/O and data-intensive applications. The programmabil-
ity of the network may improve data transfers andmake them less
sensitive to network congestion. However, the opportunity to pro-
gram the network should not bring extra complexity to data trans-
fers; it should be seamless and transparent to applications that
should not be exposed to data access and data transfer specifics.

∗ Corresponding author.
E-mail addresses: S.Koulouzis@uva.nl (S. Koulouzis), A.S.Z.Belloum@uva.nl

(A.S.Z. Belloum), bubak@agh.edu.pl (M.T. Bubak), z.zhao@uva.nl (Z. Zhao),
m.zivkovic@uva.nl (M. Živković), C.T.A.M.deLaat@uva.nl (C.T.A.M. de Laat).

http://dx.doi.org/10.1016/j.future.2015.09.032
0167-739X/© 2015 Elsevier B.V. All rights reserved.
The size and frequency of data transfers is increasing because
of the nature of scientific collaborations and commercial applica-
tions. Scientists increasingly access, exchange and share data from
different data sources [1,2]. A key factor for this is the increase of
interdisciplinary and international collaborations such as envi-
ronmental sciences [3], brain modeling [4] and medical appli-
cations [5,6]. Commercial applications also need access to large
volumes of data to provide business intelligence [7]. This data of-
ten reside in geographically distributed resources across multiple
domains spread over several research infrastructures (RIs). Most of
the applications supporting these collaborations treat the underly-
ing network as a black box.

In this paper, we will mainly focus on data transfers between
RIs. RIs play an increasingly important role in the advancement
of knowledge and technology. They are a key instrument to bring
together stakeholders with different backgrounds to look for so-
lutions to many of the problems society is facing today. RIs offer
unique research services to users from different countries, attract

http://dx.doi.org/10.1016/j.future.2015.09.032
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.032&domain=pdf
mailto:S.Koulouzis@uva.nl
mailto:A.S.Z.Belloum@uva.nl
mailto:bubak@agh.edu.pl
mailto:z.zhao@uva.nl
mailto:m.zivkovic@uva.nl
mailto:C.T.A.M.deLaat@uva.nl
http://dx.doi.org/10.1016/j.future.2015.09.032

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 65
young people to science, and help to shape scientific communi-
ties. RIs are hosted in research institutes and use a combination
of high-performance computing (HPC), grid and cloud and are of-
ten interconnected with high-capacity networks. RIs are accessed
by the scientific community through a layer of high level services
that efficiently and transparently manage the execution of com-
plex distributed CPU and data-intensive applications. Often these
applications, modeled as workflows, are composed by loosely cou-
pled tasks or jobs which communicate through file exchange [8,9].
This file exchange is facilitated by Distributed File Access Services
(DFASs) which offer a single point of entry to discover and man-
age files and replication to improve file availability. Despite the ef-
fort to move computation to the data, there are cases where this is
simply not possible. Technical constraints such as privacy and se-
curity issues, lack of computing power or the need for specialized
hardware prevent computation from reaching the data [10,11].
Typically, scientific workflows need access to datasets which are
processed to generate new datasets which have to be further pro-
cessed by subsequent tasks to achieve a defined goal [12]. There-
fore any DFAS which supports such an execution model needs to
maintain strict consistency throughout its file access points. To en-
able use of off-the-shelf software and to hide the complexity of
the network from the application developers and endusers some
DFASs offer standardized protocols [13–15] which decouple the
development of client software from the DFAS allowing for the
implementation of clients that can present the DFAS as a POSIX
file system through network transparency. Network transparency
hides the way protocols transmit and receive data over the net-
work, thus any operation that can be performed on a local file can
also be performed on a remote file. To scalewith increasing request
load, Distributed File Access Services (DFASs) often employ redun-
dant pools of servers.

Despite the availability of RIs, DFASs do not always take
advantage of their capabilities. It is rarely the case when DFASs
interact with network devices (switches, routers, etc.) to optimize
data transfers, maintain quality of service (QoS). The main hurdle
for interacting with network devices to optimize data transfers is
the configuration of these devices each using different protocols
and interfaces. This makes large data transfers between RIs
difficult to facilitate and slows down the life cycle of scientific
applications [16–18].

The configuration of network devices is challenging in tradi-
tional network architectures due to the design of these devises.
Networks can be divided in two planes, the control plane and the
data plane. The control plane is responsible for routing, it is where
forwarding decisions are made. The data plane is where the ac-
tual data packets are moving based on the instructions from the
control plane. In traditional IP networks the control plane and
the data plane are inside the networking devices. When admin-
istrators need to adapt the network configuration (modifying the
control plane) they need to separately configure all the network
devices. This leads to complex and lengthy configuration steps that
limit the flexibility of the network. This has forced DFASs to treat
the network as a black box.

SDN is a new approach to computer networkingwhich removes
the control plane from network devices and places it into SDN con-
troller, simplifying the network configuration. The communication
between the control plane and the data plane is done through a
standardized interface called ‘‘Southbound-API’’. Tomake network
programmability more flexible, the control plane (SDN controller)
also offers an interface called ‘‘Northbound-API’’. The overall ar-
chitecture of a SDN is shown in Fig. 1. In SDN the data plane is also
responsible for monitoring local information and gathering statis-
tics [19,20].

OpenFlow [21] andNetwork Service Interface (NSI) [22] are two
typical SDN examples. OpenFlow has gained a lot of attention. It
Fig. 1. A schematic software defined networking (SDN) architecture. The
communication between the control plane and the data plane is done through the
Southbound-API. The communication between the SDN controller and applications
is done through the Northbound-API.

is a standard for a Southbound-API and it describes the interac-
tion between controllers and OpenFlow-compliant switches [23].
OpenFlow-compliant switches use flow tables to coordinate the
data plane. These tables are updated by the SDN controller. Each
flow (sequence of packets from a source host to a destination
host) that passes through an OpenFlow-compliant switch should
be matched with a flow entry. A flow entry is a rule that indicates
where the switch should forward data packets. A flow entry also
includes counters which collect statistics about flows by storing
number of received packets, bytes, and duration of each flow. These
statistics can be requested from the controller that sends OFStatis-
ticsRequest messages in real time to the desired switches and re-
turns the results via the Northbound-API. Hence, measurements
that use the probes (i.e. packets) to infer the network properties
are not necessary when employing SDN.

NSI [22] provides protocols for different domains to exchange
topology information for inter-domain path selection. It also pro-
vides software services for selecting, reserving and provisioning
network paths. In this work, wewill use OpenFlow as our SDN pro-
tocol.

SDN technologies provide the opportunity to complement
research infrastructures (RIs) with several new opportunities for
supporting data and I/O-intensive workflows, for instance:

(1) customizing network connectivity between services,
(2) controlling the network QoS by controlling the data flows and,
(3) gathering information about the state of the network and help

take decisions to optimize data flows or recover from error.

However, including SDN in DFASs is still unexplored.
Themain objective of this work is to explore new opportunities

offered by the network programmability. Such an insight into
the network offers the ability to include network resources when
provisioning for large data transfers. This will reduce the execution
time of I/O and data-intensive scientific workflows that include
scientific applications, which shall be referred to as data consumers
or simply consumers.

The main contributions of this paper are:

• Investigation of the role of the SDN for file transfer services,
• A SDN-aware architecture for transparent and adaptive data

transfers,
• An observable and controllable network model that describes

data transfers from multiple sources,
• Two algorithms that take advantage of the programmability of

the network,
• Assessment of data transfer improvement resulting from SDN-

enabling DFASs.

66 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
This paper is organized as follows: In Section 2 we analyze
relatedwork on data transport and network resource provisioning.
In Section 3 we present a formalism which will allow us to reason
about the proposed solution. Section 4 describes our proposed
architecture, itsmain components and its functionality. Section 5.1
describes the experimental setupwe used to validate the proposed
solution and Section 5 first describes a set of common scenarios
that can result in the performance degradation of data transfers
and later describes the execution of an I/O-intensive workflow. In
Section 6 we present the performance results, while in Section 7,
we discuss some relevant issues of this work and give an overview
of future investigations.

2. Related work

Within the context of RIs there is a continuous effort to opti-
mize data transfers and take into consideration the characteristics
of the network and the storage resources. However, most of the
approaches face problems of interoperability between network de-
vices due to the lack of open standards. These approaches mostly
focus on path reservations and for the most part ignore the net-
work volatility. Moreover, most approaches are focused on spe-
cific frameworks or RIs. The increased popularity of SDN protocols
has offered newopportunities for content delivery network (CDN)s
that use SDN to optimize data flows and fully utilize all their net-
work. CDNs however, base their large scale content availability to
eventual consistency. This model of consistency although suitable
for web content is not ideal for DFASs simply because applications
need strict consistency. Even thought SDN protocols are becoming
popular DFASs are not moving towards that direction.

StorNet is a resource provisioning and management system
within RIs for data transfers [24]. StorNet relies on TeraPaths [25]
to ensure end-to-end bandwidth reservations. Both StorNet and
TeraPaths are systems developed for the ATLAS grid environment.
Their purpose is to move data between ATLAS Tier-1 data cen-
ters [26]. They perform the data transfers using dedicated fractions
of the available bandwidth. The TeraPaths approach is very similar
to the SDN approach. It uses a set of Network Device Controller
(NDC) modules to configure network devices within the domain of
several RIs. The challenge here is to configure a number of het-
erogeneous network devices lacking a common configuration and
control protocol. StorNet relies on advance reservations which
have to specify the start and end time of the data transfers. Pro-
viding advance reservations can be difficult to achieve in an envi-
ronment where multiple applications produce and consume data.
The size of the data is often unknown before they are actually gen-
erated or consumed. The static aspect of these approaches makes
them vulnerable to network traffic congestions or increasing load
on the machines that host and transfer data.

A similar approach is presented in [27] which describes a
mechanism for scheduling end-to-end network reservations for
maintaining QoS. DFAS need to send reservation requests in
advance before moving data. This approach requires the file access
service to be tightly connected with the process of producing and
consuming data. The reservation needs information about the data
size, the time to start the transfer, the deadline for the completion
of the transfer and the desired speed. Reservation techniques
require from file access services to have a global view of the logic
of an application. These techniques are difficult to implement in
highly distributed and heterogeneous environments where tasks
behave differently depending on the characteristics of the used
infrastructure. This approach also faces problems regarding the
configuration of heterogeneous network devices.

In [28] authors optimize transferring large data volumes be-
tween RIs for collaborative data analysis with scheduling multiple
bandwidth reservation requests. As with the previous approaches,
this one is concerned with bandwidth reservations which may be
problematic for scientific workflows. The authors evaluated their
approach by using simulations and therefore did not get into the
specifics of configuring heterogeneous network devices.

Recently, SDN technologies attracted lots of attention for
improving QoS and quality of experiences (QoE) in streaming
video over the Internet. In [29] the authors use OpenFlow to get
information about the state of the network and offer QoS for
YouTube videos. The work presented in [30] introduces an SDN-
based framework to achieve a network-wide QoE and fairness for
video streaming in networks with limited resources. The authors
of [31] propose a Network Control Plane for video streaming
which maximizes users QoE and network utilization by reserving
bandwidth on a per-flowbasis. These approaches are developed for
video streaming where data transfers involve files that in practice
do not exceed 50 MB [32].These publications are concerned with
CDNs that adopt an eventual consistencymodelwhich is not suited
for scientific workflows.

In [33] the authors present Palantir, a system that abstracts net-
work proximity for parallel/distributed computing frameworks us-
ing OpenFlow. Palantir’s aim is to provide to parallel/distributed
computing frameworks such as MapReduce a view of the under-
lying network to provide better job scheduling. This approach is
one of few attempts to introduce SDN to RIs, but it is not oriented
towards data transfers.

The work presented in [8] considers a peer-to-peer (P2P)
approach to data sharing in scientific workflows running in the
cloud. The authors evaluate their approach against traditional
network file systems and conclude that although their approach
performs better than NFS [34] which is a centralized file system,
it does not perform as well as GlusterFS [35] which is a DFAS.
According to the authors the reasonwhyGlusterFS performs better
than the P2P approach is because it is a fully distributed file system
so it operates on a similar principle as P2P with files distributed
across many nodes. Moreover, the proposed approach is not able
to address issues of network congestion and optimal data flow
routing. The authors take the traditional approach and consider the
network as a black box.

3. Network model

There are three components involved in a file transfer: a source,
a consumer and a network with a path from the source to the
consumer. In the case of DFAS there are multiple sources to
select from. Therefore, we model a network connecting several
sites where a consumer requests data which can be downloaded
from multiple data sources. We assume that the infrastructure
is programmable, therefore the state of the network should be
observable and controllable. At any given moment we can observe
the number of bytes passing through each link and have a view
of how many switches and devices are in the network. We also
assume that we have a global view of the network topology and
the path each data flow follows to reach its destination. The
intention here is not to represent a model of a large network
containing millions of consumers and sources, but rather a study
a realistic usecase of a scientific workflow where dozens of
consumers request data from dozens of sources through a network
connecting several sites. Based on these observations the most
suitable representation of this problem is the multiple source
shortest path (MSSP) problem (see Fig. 2).

The network infrastructure is represented as a bidirectional
weighted graph G(V , E), where V is the set of all vertices in the
network and E all the edges or links. This model considers a single
consumer cns ∈ V which is based on the assumption that every
consumer request is processed by a separate thread.

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 67
Table 1
Description of the variables used in Eqs. (1)–(5).

Variable Description

cns The consumer that requests data
D = {d1, d2, . . . , dn} ⊂ V The set of data sources where data can be download from
S = {s1, s2, . . . , sm} ⊂ V The set of programmable switches
Pdi,cns A path from a data source di to the consumer cns
cdi,cns The total cost of path Pdi,cns
cdi,si , csi,sl , cscns,cns The costs for traversing from data source di to switch si, from switch si to switch sl and from switch sl to a consumer cns
MTTsi,sj The minimum transfer time for moving a file of certain size from si to sj
FS The size of the file we want to move
Lsi,sj The additional delay caused by third party traffic in the link connecting si and sj
Bpssi,sj The maximum observed speed in bytes per second of the link connecting si and sj
tsi,sj The average usage time of the link connecting si and sj
Fig. 2. Network model. Using information from the network, we are looking for
the least cost path from a set of data sources D = {d1, d2, . . . , dn} to the consumer
cns. The nodes named si , sj , sk , sl , scns represent the switches of the network. The
consumer cns is adjacent to the switch scns ∈ S and each data source d ∈ D is
adjacent to exactly one switch from S.

The set of data sources is D = {d1, d2, . . . , dn} ⊂ V and the set
of switches is S = {s1, s2, . . . , sm} ⊂ V . S and D are disjoint sets.
The number of vertices is hence |V | = |D|+|S|+|cns| = n+m+1.
Table 1 summarizes the notations we will use in this paper.

In Fig. 2, a path from a data source di to cns is described as
Pdi,cns = (di, si, sl, scns, cns) and the total cost of path Pdi,cns is:

cdi,cns = cdi,si +


csi,sl + cscns,cns. (1)

The MSSP problem is trying to find a data source di ∈ D which
is on a path Pdi,cns that minimizes the cost function in Eq. (1).

Because our goal is to speed up data transfers, the costs
cdi,si , csi,sl , cscns,cns in Eq. (1) represent features that impact data
transfers such as bandwidth, latency and load. Therefore, the costs
csi,sl assigned to the link between the switches si, sj are defined as:

csi,sj = MTTsi,sj + Lsi,sj . (2)

The minimum transfer time, MTTsi,sj is defined as the time it
takes to move a file of size FS between switches si and sj assum-
ing exclusive access to the link between them. Therefore, MTTsi,sj
depends only on the bandwidth and latency of the link. Lsi,sj repre-
sents the additional delay caused by third party traffic traversing
the link between switches si and sj.

To calculate the minimum transfer time,MTTsi,sj , it is necessary
to obtain the maximum observed speed of a link. Therefore, we
calculate the minimum transfer time MTTsi,sj using the maximum
observed speed Bpssi,sj , divided by the file size FS. Bpssi,sj is
calculated by dividing the number of bytes in a flowby the duration
of that flow. SDN provides us with the ability to retrieve from each
switch the number of received packets, bytes, and the duration of
each flow. We use these metrics to calculateMTTsi,sj :

MTTsi,sj =
max(Bpssi,sj)

FS
. (3)
In practice, it is challenging to obtain an accurate estimation of
the time it takes to transfer a file. Issues like sudden traffic bursts
and unexpected link failures make it particularly difficult to make
transfer time estimations. Instead of trying to estimate the exact
transfer time for a file,we calculate an additional delay for each link
that depends on how often the link is used. The additional delay
Lsi,sj between si, sj is calculated by multiplying the average usage
time tsi,sj of the link by a factor b. Where b is a constant we use to
control the impact of the link usage in Eq. (2). Lsi,sj is give by:

Lsi,sj = tsi,sj · b. (4)

This approach is not intended to provide an accurate estimation
of the added delay. Instead, it helps to provide a relative indication
of the link load. We use this approach because it is impossible to
obtain information about the bandwidth allocation policy of a link
or the number of streams contained in a flow. In other words, it is
not possible to know howmany file transfers pass through a link at
the same time or the bandwidth each transfer has been allocated.

In Eq. (4), usage time tsi,sj is calculated by observing for how
long flows occupy the link connecting si and sj. tsi,sj is calculated
as an exponentially weighted moving average (EWMA) [36]. We
use EWMA to obtain an average that smooths out short-term
fluctuations and highlights longer-term trends. This way sudden
traffic bursts or short-term link availability have no effect to the
cost function in Eq. (2). The EWMA of tsi,sj is given by:

tsi,sj,new = α · tsi,sj,prev + (1 − α) · tsi,sj,curr , (5)

where α ∈ [0, 1] is the weighting factor, tsi,sj,curr is the current
measurement, tsi,sj,prev the previous value and tsi,sj,new the newly
calculated value. The tsi,sj,new is recalculated whenever there is a
new flow on the link.

Algorithm 1 shows the process of updating the MTTsi,sj and
tsi,sj metrics. As a first step the algorithm polls the SDN switches
for active flows (data transfers) in the network (line 3). Then,
for each flow in the network the algorithm calculates the sample
maximum bandwidth which is necessary for Eq. (3) (lines 4–8).
Finally, Algorithm 1 calculates the link usage as EWMA which is
necessary for Eq. (4). This algorithm introduces little complexity
(O(N)) as it only depends on the number of active flows and
therefore scales linearly.

Algorithm 2 builds the graph G(V , E) and calculates the cost
for each edge as defined in Eq. (2). First, the algorithm starts by
calculating the cost cscns,cns of the link between consumer cns and its
associated switch scns. Then it calculates the costs of the links on all
the paths between the consumer switch and eachdata source. Once
all the costs of the G(V , E) are known, the algorithm calculates
the shortest path between the consumer and all the available data
sources. To find the shortest path we use the well known Dijkstra’s
algorithm, which has complexity O(|E| + |V | + log |V |) [37].

68 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
Algorithm 1 Updating Bps and Lmetrics for active flows
1: procedure updateMetrics
2: while true do
3: Gather all active flows from switches and store it in F
4: for all flows ∈ F do
5: Calculate speed: Bpsnew =

byteCount
duration

6: Retrieve the previous link speed Bpsold
7: if Bpsnew ≥ Bpsold then
8: Set link speed to Bpsnew
9: end if

10: Calculate MTTsi,sj according to Equation 3.
11: Retrieve the previous link average usage time tprev
12: Get the current link tcurrent
13: Calculate link usage as EWMA according to Equation

5
14: Calculate Lsi,sj according to Equation 4
15: end for
16: end while
17: end procedure

Algorithm 2 Finding the least cost path from a set of data sources
to a consumer and return the most optimal source
1: procedure getLowestCostPath(cns,D)
2: Calculate the cost cc,scns from the consumer cns to its switch

scns using Equation 2
3: for all data source di ∈ D do
4: Calculate the cost cdi,sj from data source di to its switch

si using Equation 2
5: end for
6: for all switches si ∈ S do
7: Calculate the cost csi,sj from switch si to it switch sj using

Equation 2
8: end for
9: Find the shortest path from all data sources D to consumer

cns
10: Return the IP of data source di which is part of the shortest

path
11: end procedure

4. Integration of SDN and DFAS

The algorithms presented in Section 3 are implemented in
an SDN-aware DFAS. To optimize file transfers, we propose an
architecture which uses SDN to select the shortest path between
a set of data sources and a consumer. The new service extends our
early work: A DFAS that federates data storage named Large OBect
Coud Dta storagE fedeRtion (LOBCDER) [38] and a network QoS-
aware resource planning service named NEtwork awareWorkflow
QoS Planner (NEWQoSPlanner) [39,40].

4.1. Architecture requirements

The architecture of the new DFAS should provide transparent
high performance and reliable data transfers. More specifically,
the design should implement a standardized protocol for access-
ing datasets and offer strict consistency to consumers. This re-
quirement allows the use of off-the-shelf client softwarewhich can
offer a file system abstraction. This is important to maintain net-
work transparency to files and allow applications to communicate
through file exchange. The architecture should be able to use any
type of data source whether this is grid or cloud storage. It should
also have increased data availability and scale with increasing re-
quest load. The requesting consumer should be assigned to the best
data source. If the selected data source is experiencing heavy load
Fig. 3. Architecture of the SDN-Aware DFAS supporting multiple SDN domains. On
the top level, the LOBCDER master communicates with the NEWQoSPlanner to get
information for selecting the most optimal worker. The NEtwork aware Workflow
QoS Planner (NEWQoSPlanner) aggregates information from all SDN controllers.
For non-SDN domains the NEWQoSPlanner treats them as a black box, collecting
information only on the input and out output of the domain. At transfer time the
NEWQoSPlanner is used to optimize the data route.

the architecture should autonomously switch sources. The service
should be able to dynamically adapt seamlessly to network con-
gestions. Finally, there should be an abstraction layer between the
service and the network devices to enable the network pro-
grammability.

We propose an SDN-aware DFAS architecture that consists of
three main components: the LOBCDER master and workers, and
the NEWQoSPlanner. The LOBCDER master has a WebDAV inter-
face to offer clients a standardized data access protocol. Internally,
the LOBCDERmaster keeps references of all data sources,where ac-
tual data are stored. The LOBCDER workers are stateless HTTP ser-
vices that serve two purposes: 1) load-balance incoming requests
and maintain high data availability and 2) translate various proto-
cols used by the storage backend into standard HTTP to enable the
use by WebDAV clients. The storage backends may be of any type,
e.g. OpenStack-Swift [41], GridFTP [42], SFTP, etc. They may be lo-
cated anywhere and do not require installation of any additional
software to be used by the proposed architecture.

TheNEWQoSPlanner aggregates information collected from the
network, reserves paths, and controls the flows via SDNcontrollers.
The proposed architecture relays on the existence of SDN con-
trollers and programmable switches, something that is becoming
more common in RIs. Fig. 3 shows the overall architecture; the
LOBCDER workers are the data sources. The workers overlay a set
of independent and heterogeneous storage backends.

4.2. LOBCDER

The LOBCDER [38] is a DFAS that provides access to distributed
scientific data stored in various storage frameworks distributed
across independent providers. It is a part of the Data and Compute
Cloud Platform of the VPH-Share project [5]. LOBCDER is composed
of two major components: a master and a number of workers.
The workers take over file transfers while the master serves
requests about the metadata of a file (like size, creation date,
etc.) and replicates files to available storage frameworks owned
by independent providers. The LOBCDER master implements
a WebDAV interface that offers a standardized protocol. This
way LOBCDER is able to provide a file system abstraction with
strict consistency and, with the use of workers, offer improved
availability. Both the master and workers can access any type
of data source, whether this is grid or cloud storage, due to the

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 69
use of a virtual file system (VFS) API. The VFS API offers unified
access to a large number of storage resources such as Local File
System, SFTP, WebDAV, GridFTP, SRM, LFC, iRODS, OpenStack-
Swift, vCloud, AWS S3. LOBCDER workers are simple stateless
servletswhich allows them to be deployed on grid, cloud, or cluster
servers. The number of LOBCDER workers can be increased or
decreased following the number of incoming data transfer requests
and therefore they elastically scale depending on the load.

4.3. NEWQoSPlanner

NEWQoSPlanner is an agent based systemwhichbridges the ap-
plication and the underlying network infrastructure. TheNEWQoS-
Planner selects network sources and invoke network services to
reserve, allocate, provision and control the network resources.
NEWQoSPlanner is able to provide cross-domain topology descrip-
tions and information. The system originally developed in the con-
text of the CineGrid [43] project to support collaborative video
composition on large quantity of video material. The NEWQoS-
Planner uses a Network Markup Language (NML) to describe the
network topology and the connected devices. With the network
description the NEWQoSPlanner resolves QoS constraints by
searching for optimal combinations of network paths between
sources and destinations. For controlling network services, it sup-
ports the NSI framework [44] and the OpenFlow standard.

In this work, we use the OpenFlow interface of the NEWQoS-
Planner to obtain information from the SDN controllers and to
monitor the performance and characteristics of each link in the
network. This allows us to include Algorithms 1 and 2 into
NEWQoSPlanner and assign to consumers the data source with the
lowest cost and dynamically adapt to network congestions.

4.4. SDN-Aware DFAS

Algorithms 1 and 2 are implemented extending the NEWQoS-
Planner. Algorithm 1 provides a view of the state of the network
and Algorithm 1 uses this information to solve the MSSP problem.
To communicatewith LOBCDER, NEWQoSPlanner implements two
additional interfaces. The first is used by the LOBCDER master to
request a solution for the MSSP problem which allows for the se-
lection of themost suitable worker. The second interface is used by
the LOBCDERworker to request traffic re-routing in case a network
congestion. We have also equipped the LOBCDER worker with the
ability to monitor the performance of file transfers and detect any
performance degradation. The interaction of themain architecture
components is described below.

The NEWQoSPlanner constantly pools the SDN controllers for
active flows and keeps a record of theMTT and Lmetrics computed
in Algorithm 1. Additionally, it calculates the shortest paths
based on the topology information which includes the location
of the available workers and potential consumers with the use of
Algorithm 1. As soon as LOBCDERmaster receives a request from a
consumer to download a file, it requests from the NEWQoSPlanner
the shortest path between the consumer and the availableworkers.
The NEWQoSPlanner identifies the shortest path and returns to
the master the IP of the worker that can be used to download the
data. The LOBCDER master then sends a redirect message1 back
to the consumer which initiates the transfer. Finding the shortest
path between the consumer and a set of workers may take a long
time depending on the size of the network and number of workers.
To ensure that the consumer gets a response within a reasonable
amount of time, the LOBCDERmaster sets a deadline for getting the

1 This is an HTTP Redirect message with a 302 return code.
response from the NEWQoSPlanner. If the deadline expires and the
LOBCDER master has no response, it assigns a worker based on a
simple round-robin algorithm. Moreover, as soon as the transfer
begins the assigned LOBCDER worker samples the speed of the
transfer. The speed is calculated as a EWMA to smooth out any
short term fluctuations. As soon as the speed drops below a certain
threshold the worker sends to the NEWQoSPlanner a request
to optimize the flow between the consumer and the LOBCDER
worker. The NEWQoSPlanner looks for the shortest path between
the consumer and worker using Algorithm 1 and directs the flow
through the least cost path. To avoid suboptimal path selection, the
worker sends periodical requests to the NEWQoSPlanner to search
for possible paths with the lowest cost. The frequency of requests
is decreased when the transfer nears its completion. Selecting
a suboptimal path may occur if the NEWQoSPlanner selects a
less used link (Eq. (4)) with less bandwidth (Eq. (3)) instead of a
busy link with more bandwidth. However, if the link with more
bandwidth becomes available during the transfer, the worker
should be able to switch to link with more bandwidth. Moreover,
if the worker detects a drop in performance and after sending
requests to the NEWQoSPlanner observes no improvement, it
assumes that either the worker link is busy, or the node hosting
the worker is under high load. In the case of high load on the host
resources it is preferable to monitor the transfer speed rather than
CPU andmemory load. CPU andmemory usage of a virtualmachine
running on a cloud do not increase if the hosting node is under high
load. If theworker detects a drop in performance and the consumer
supports byte serving2 theworker drops the connection forcing the
consumer to resume the transfer from a different worker. In the
case where the node hosting the worker is under heavy load the
worker itself notifies the master about its state. This is done to
avoid rescheduling of the same worker.

The way the three main components of the architecture (the
LOBCDER master and worker, and NEWQoSPlanner) interact with
each other can be seen in Fig. 4. They can be deployed on RIs
with SDN-enabled switches and are invisible to consumers and
therefore do not require any modifications to the software used
by these consumers.

5. Experimental setup

In this section we provide a description of the test environment
and the setup we used to run our experiments. In the first setup
we validate our architecture with three scenarios that examine the
role of the sources and the network. In the second setupwe test our
architecture with the use of an I/O-intensive workflow.

5.1. Virtual test environment

To assess the performance of the architecture we used a
controlled test environment. This environment allows evaluation
of the performance and functionality of the architecture against
several scenarios. Using real live networks these scenarios
might be particularly difficult to test. Moreover, a virtual test
environment allows us to verify that the proposed system will
performas expected and generate reproducible results. It also gives
us the chance to study the relationships between the components
of the architecture in detail. We may control characteristics of
the links specifying bandwidth and latency as well as introduce
traffic in any part of the network. To conduct our experiments
we used ExoGeni [45] a multi-domain infrastructure-as-a-service
(NIaaS) federated testbed that provides a virtual laboratory for
networking anddistributed systems.ORCA (OpenResource Control
Architecture), the ExoGENI control framework software, allows
easy deployment of virtual topologies, composed by virtual
machines, networking connections, and other elements.

2 Consumer can request a range of bytes from a file.

70 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
Fig. 4. Interaction of the main architecture components. When an HTTP consumer requests data Large OBect Coud Dta storagE fedeRtion (LOBCDER) provides the data
transfer from heterogeneous storage backends, while the NEWQoSPlanner aggregates information about the state of the network and uses Algorithms 1 and 2 to select the
optimal worker and path for the data.
Fig. 5. Experimental topology for analysis of SDN-aware data transfer system. In
this topologywe are looking for themost optimalworker to transfer large files to the
consumer and investigate the discovery of alternative routes between the worker
and the consumer.

Fig. 6. Experimental topology for testing an I/O-intensive workflow with the
Montage Astronomical Image Mosaic Engine (Montage). In this topology we use
consumers 1, 2 and 3 to execute the tasks of the workflow shown in Fig. 7.

Our virtual test environment consists of the topologies shown
in Figs. 5 and 6. The topology in Fig. 5 represents a common setup.
It is often the case that two universities or RIs are connected with
one or more direct links and share computational and storage re-
sources to run experiments on the infrastructure as well as to ex-
ecute large-scale, data-demanding scientific applications [46]. The
Table 2
Round trip time (RTT) from consumer to workers for the topology
in Fig. 5. Worker 2, which is closer to the consumer, has lower RTT
compared with the rest of the workers.

Node Round Trip Time, ms

Worker 1 2.82 (via link 4)
Worker 1 3.11 (via link 5)
Worker 2 1.78
Worker 3 2.79 (via link 4)
Worker 3 2.74 (via link 5)

topology in Fig. 6 represents a collaborative set-up between sev-
eral RIs to execute a I/O-intensiveworkflowwhere tasks communi-
cate through file exchange. Both testbeds were selected to validate
all basic features of the elaborated approach, algorithms, and ar-
chitecture. Within the ExoGENI framework, the testbed presented
in Fig. 6 was the largest we could use in a controlled way. Build-
ing larger testbeds with more complex topologies requires usage
of several sites which may go off-line for maintenance. In the fu-
ture, when significantly larger testbed is available, additional ex-
periments will be performed to validate the obtained results.

In these topologies all switches are Open vSwitch which are
open-source software switches [47] and are connected to the SDN
controller using OpenFlow. For the topology in Fig. 5, links 1, 2,
4, 7, 8 and 9 and have 100 Mbps bandwidth while links 3, 5,
and 6 have 10 Mbps. All links except links 3 and 6 are used for
data transfers. Links 3 and 6 are used to send and receive control
messages between the switches and the controller. Latency plays
an important role in performance; Table 2 shows the average round
trip time from each node to the consumer.

For the topology in Fig. 6, links 3, 4 and 5 have 100 Mbps
bandwidth while the rest — 200 Mbps bandwidth; links 3, 4 and
5 are used to send and receive control messages between the
switches and the controller. Although ExoGENI may provide links
with approximately 1 Gbps, we choose to use links of up to 200
Mbps to have a more reliable testbed, since requests in ExoGENI
with large capacity links tend to fail. This choice will not affect the
behavior of our architecture, since all nodes and methods use the
same topologies and links.

In the experiment setup the consumer sends requests to down-
load files to the LOBCDER master. LOBCDER master communi-
cates with NEWQoSPlanner to get the optimal path between
workers and the consumer and redirects requests to the appro-
priate worker. The workers stream data to the consumer from the
backends andmonitor the speed of the transfer. In this setupwe as-
sume that the workers are deployed on the backends themselves.

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 71
Theworkers use a simple cachingmechanismwhere they evict the
oldest file from their cache using a Least Recently Used (LRU) evic-
tion policy. Therefore, since the consumer requests the same file it
receives it directly from the worker. The NEWQoSPlanner collects
information fromSDN controllers (in this case theNEWQoSPlanner
and SDN controller are on the same node) and provides the opti-
mal path to the LOBCDER master. The two switches are registered
on the SDN controller. TheNEWQoSPlanner decides about the opti-
mal routing and sets the routing rules on the switches via the SDN
controller. Before the consumer makes any request the switches
work in a standalone mode where they act as normal layer 2
switches. As soon as the consumer requests a file from LOBCDER,
the master contacts the NEWQoSPlanner to set the most optimal
path.

The virtual experimental topologies represent several separate
networks, where we can control and collect information from.
We assume that we can use resources on all networks to deploy
LOBCDER workers. As stated earlier, this is in accordance with
a real-world setup where several RIs are directly connected to
each other and share available resources for experimenting on
the infrastructure or to run data and I/O-intensive scientific
applications. Therefore, with this common topologies we can
investigate the selection of the most optimal worker, discover
alternative routes between the worker and the consumer and
assess the execution times of an I/O-intensive workflow.

5.2. Evaluation scenarios

Asmentioned in Section 3, there are three components involved
in a file transfer: a set of sources, a consumer and a network
with a path from the source to the consumer. In this section we
will provide three scenarios that examine the role of all three
components and their impact of the performance of the data
transfers. The following experiments have two objectives: validate
the cost function used in Algorithm 2 (Scenario 1) and investigate
problems that can appear at the edge of the network at the source
nodes (scenario 2), or the network core (scenario 3).

We assume that transfers are performed on a shared infras-
tructure (multi-user, multi-application). As a consequence the net-
work can become congested by additional traffic and the hosts can
become overload by co-hosted applications. For each scenario we
compare results with and without the use of the NEWQoSPlanner
while the consumer requests to download a file from the LOBCDER
master. The scenarios of each experiment are described as follows:

Scenario 1: Optimal worker Selection: The nodes hosting
the LOBCDER workers 1 and 3 from which data is streamed
to the consumer, also host applications generating additional
traffic which reduce the available bandwidth. For this scenario we
consider two cases: (1) one using the NEWQoSPlanner to choose
the path and worker with less traffic and (2) one using a simple
round-robin algorithm for selecting workers.

Scenario 2: Dynamic worker Selection: The LOBCDER master
chooses the worker with the lowest traffic. During the transfer
other applications on the nodes hosting LOBCDER workers 1 and
2 start I/O operations which reduces the performance of the data
transfer. Herewe consider two cases: (1) a static onewhereworker
continues the transfer to the consumer on the overloaded link and
(2) a dynamic case where the worker drops the connection if the
speed is below a certain threshold, and the consumer makes a
new request to the master to resume the transfers using another
worker.

Scenario 3: Dynamic Traffic Routing: The LOBCDER master
chooses the worker with less traffic. The node hosing worker 2
is not available due to downtime and during the transfer the
selected LOBCDER worker detected a degradation of the network
performance due to a congestion on the network. In the controlled
experimental environment we simulate network congestion on
link 4 and therefore reduce the available bandwidth (in this
experiment we reduced the bandwidth to 10 kbps). This simulates
link reliability issues (link starts to drop packets) and data sources
failing. Similarly to the second scenario, we consider two cases: 1)
the static one where the worker continues the transfer using the
problematic link, 2) the dynamic case where the worker requests
from the NWEQosPlanner to find an new optimal path to the
consumer if the speed drops below a certain threshold.

5.3. I/O intensive workflow

To investigate the benefit of our approach on real I/O-intensive
workflows we conducted a set of experiments using a Montage
workflow. Montage is a toolkit for assembling Flexible Image
Transport System (FITS) images into custom mosaics of the sky.
It is used by astronomers to generate large images of the sky
composed of smaller images. This application integrates multiple
images taken fromdifferent parts of a galaxy to produce one image.
Apart from the complex algorithm that ensures that the separate
images will fit together while preserving some vital data, this
workflow seen in Fig. 7, produces some intermediate images, that
go on to further processing until they are composed into the final
image [48].

The workflow seen in Fig. 7 creates a mosaic of the Pleiades
star cluster using data from the Digitized Sky Survey (DSS2) [49].
All the input images required for the generation of the Pleiades
star cluster are stored in the LOBCDER DFAS. All the tasks of the
workflow communicate with each other through files exchange
using LOBCDER. The Montage workflow generates over 2000
requests to LOBCDER of which approximately 1900 are operations
on the data itself (upload, download and delete). The dataset used
for this workflow is composed by 560 files totaling 4.1 GB.

To focus only on the file exchange between tasks and the effect
of data transfers on the execution time of the workflow we run
the workflow once and then used the trace of that execution. This
trace only includes the file requests made my the workflow tasks.
This way we eliminate the processing time from the workflow
execution and only examine the data transfer time. Eliminating
the processing time of the workflowmakes it more challenging for
LOBCDER since the amount of requests per second is increased. To
run the Montage workflow we use the topology shown in Fig. 6.
Consumers 1, 2 and 3 each execute one of the three strands of
the workflow. After all strands are executed in parallel consumer
1 builds the final mosaic. All consumers have mounted LOBCDER
and all input and intermediate data are accessed as a local files.

Similarly to Section 5.2 we consider two scenarios when
running the Montage workflow. In the first we run the workflow
on the topology without other applications generating network
traffic. In the second the nodes hosting workers 1 and 3 also
host applications that generate additional traffic which reduce the
available bandwidth.

6. Performance evaluation

To evaluate the performance of the proposed architecture, we
measured the speed at which the consumer downloads files of dif-
ferent sizes. The files we used scenario 1 and 2 described in Sec-
tion 5.2 are 10MB, 100MB, and 1 GB. For the last two scenarios we
used files of 100 MB, 1 GB and 5 GB. With the first two we inves-
tigate how we can increase file transfer performance by selecting
the most optimal worker as well as the worker’s ability to react
to congestions on its link. Scenario 3 we look at the ability of the
architecture to dynamically adapt and discover alternative routes

72 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
Table 3
Results for scenario 1.Wemeasured the transfer speed using 10MB, 100MB and 1 GB files and compared it with a round-
robin strategy and the use of SDN technologies that allows us to select the worker with the least amount of load on its
link and resources.

File Size NEWQoSPlanner Round-Robin
Speed, MB/sec Stdev, MB/sec Speed, MB/sec Stdev, MB/sec

10 MB 7.23 0.64 7.84 6.61
100 MB 10.77 0.56 9.08 3.36

1 GB 11.17 0.06 8.55 3.25
Fig. 7. Montage workflow for generating the Pleiades star cluster. This workflow
generates over 2000 requests to LOBCDER of which approximately 1900 are
operations on the physical data (upload, download and delete). The dataset used
for this workflow is composed by 560 files totaling 4.1 GB.

between the worker and the consumer that avoid congestions and
unreliable links.
6.1. Scenario 1: Optimal worker selection

As expected, it is clear from Table 3 that for small file transfers
(up to 10MB) the round-robin strategy is faster than the NEWQoS-
Planner. This is mainly due to the overhead introduced by the pro-
cedures which try to optimize both the worker selection and the
path to the consumer. However, for larger file transfers (over 100
MB), this overhead becomes negligible and the average speed of
the transfers is very close to the link bandwidth. As mentioned in
Section 5.1 for this scenario, all links have 100 Mbps (12 MB/sec)
bandwidth and for file sizes over 100 MB our solution can utilize
at least 89.7% of the link speed.

The round-robin strategy exhibits a higher variance because
the selection process is not considering the characteristics of the
workers or the link and each worker is selected according to a
predefine order. If the algorithm selectsworkers 1 or 3 a significant
drop in the transfer speed is registered. When selecting worker 2
the transfers are a lot faster. This is because worker 2 is connected
to the consumer via a low-traffic path and has lower latency (see
Table 2).

6.2. Scenario 2: Dynamic worker selection

In this scenario the worker monitors the quality of the transfer
by calculating the EWMA (this is similarwith Eq. (5) in Section 3) to
smooth out short-term fluctuations. The sensitivity of the EWMA
to short term variations is defined by a weighting factor α ∈

[0, 1]. Smaller values of α make the EWMA very sensitive to
network speed fluctuations while larger values of α (close to one)
make EWMA less sensitive therefore the choice of α affects the
stability of the worker. If α is too low the worker will be too
sensitive to speed fluctuations and may unnecessarily close the
connection. If α is too high the worker will not be able to react
quickly to performance reductions. Fig. 8 shows the effect of α
on the threshold used by the worker to decide when to drop the
connection. In this Figurewemonitor the performance of a transfer
and measure the ‘‘real’’ speed. To simulate network congestion we
introduce additional traffic after 220 s.

In Fig. 8a, with α = 0.5 and the threshold is set to 90% of the
maximum EWMA speed (each time we calculate the EWMA we
compare if the newly calculated value is greater that the previously
saved maximum EWMA speed). If the EWMA speed crosses the
threshold the worker drops the connection. In this case the worker
unnecessarily drops the connection after 36 s. It is only when α =

0.95 that the worker behaves as expected and drop the connection
only after the point where we have injected extra traffic to create
network congestion (Fig. 8b).

Table 4 shows the results we obtain when testing scenario 2.
The results show that the strategy of workers closing the connec-
tion does not always have a positive impact on the performance.
For relatively small file transfers (100 MB) the overhead of find-
ing an alternative worker, described in the second scenario is too
high compared with the total transfer time. However, this strategy
shows improvement for large data transfers. Fig. 9 shows the trans-
fer speedmeasured at the consumerwhen downloading a 5GB file.

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 73
Table 4
Results for the second scenario. We measured the transfer speed using 100 MB 1 GB and 5 GB files and compared it with
two worker implementations: A worker that is not monitoring performance and a worker that monitors the transfer and
reacts to performance drops.

File Size Dynamic: Worker monitors performance Static: Worker continues transfer on
overloaded link

Speed, MB/sec Stdev, MB/sec Speed, MB/sec Stdev, MB/sec

100 MB 2.44 0.29 7.07 1.53
1 GB 7.85 0.56 5.66 0.31
5 GB 10.20 0.28 5.94 0.56
(a). (b).

Fig. 8. α = 0.5 and threshold 90% of the maximum exponentially weighted moving average (EWMA) speed.
Fig. 9. Results for the second scenario. We measured speed from the consumer’s
perspective while downloading a 5 GB file. After approximately 200 s the
performance drops dramatically because the node hosting the LOBCDER worker
is performing some other I/O operation. In the static case the LOBCDER worker is
not reacting while in the dynamic it drops the connection at approximately 220 s
and the consumer resumes the transfer at approximately 250 s from an alternative
LOBCDER worker.

After approximately 200 s the performance drops dramatically be-
cause the node hosting the LOBCDER worker is performing some
other I/O operation. In the static case the LOBCDER worker is not
reacting and the download is completed in approximately 990 s.
Using the monitoring the LOBCDER worker drops the connection
at approximately 220 s and the consumer resumes the transfer at
approximately 250 s from an alternative LOBCDERworker comple-
menting the download after 457 s.

6.3. Scenario 3: Dynamic traffic routing

Fig. 10 shows the results for the third scenario while
downloading a 1 GB file. After 55 s the performance of the transfer
is reduced. In the static routing case the transfer continues on
the problematic link completing the transfer after 940 s. In the
dynamic routing case the traffic is rerouted froman alternative link
completing the transfer after 545 s. Therefore, flow optimization
using NEWQoSPlanner significantly improves the file transfer
which is completed approximately 40 % faster. The worker detects
Fig. 10. Results for the third scenario. Measuring speed from the consumer’s
perspectivewhile downloading a 1GB file. After 55 s the performance of the transfer
is reduced due to injected traffic on the chosen link. In the static routing case the
transfer continues on the problematic link completing the transfer after 940 s.
In the dynamic case, the LOBCDER worker sends an optimization request to the
NEWQoSPlanner which reroutes the traffic from an alternative link complementing
the transfer after 545 s.

a drop of performance, sends a request to the NEWQoSPlanner
to optimize the flow (which takes approximately 70 s). The
NEWQoSPlanner provides an alternative route via link 5 which has
a lower bandwidth (10Mbps) but at thismoment is faster than link
4 which has lower bandwidth (10 kbps) due to the injected traffic.

6.4. I/O intensive workflow

Figs. 11 and 12 show the execution times of each individ-
ual request to LOBCDER. In both graphs the x-axis represents the
request number and the y-axis the time required to serve that re-
quest. Fig. 11 shows the results for running the Montage work-
flowwithout other applications generating network traffic.We can
see that for the first part of the workflow our approach is signifi-
cantly faster for the majority of the requests. For the rest of the
execution the two methods have a similar performance with our
approach performing slightly better. Our approach performs better
on the first part of the execution because the NEWQoSPlanner se-
lects themost optimalworker to server each consumer. For the rest

74 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
Fig. 11. Running workflow without additional traffic. For round-robin the
execution time was 11.6 min and for SDN 9.5 min.

Fig. 12. Running workflow with traffic from 4 to 6. For round-robin the execution
time was 32.1 min and for SDN 12.3 min.

of the execution because intermediate results are not replicated on
all workers both approaches have a limited choice ofworkers. Nev-
ertheless, with our approach the execution timewas 9.5minwhile
with the round-robin approach 11.6 min.

Fig. 12 shows the results for running the Montage workflow
while the nodes hostingworkers 1 and 3 also host applications that
generate additional traffic which reduce the available bandwidth.
These results show that our approach serves the majority of
the requests much faster that the round-robin approach. This
is because NEWQoSPlanner is able to identify the least cost
path using Algorithm 1 completing the workflow execution in
12.3minwhile the round-robin approach completed theworkflow
execution in 32.1 min.

7. Conclusions and future work

In this paper, we demonstrated that exploiting SDN may
improve performance of large data transfers and I/O-intensive
workflows. The proposed approach is transparent for end users
as they may locate, discover, and share datasets with off-the-
shelf software like web browsers or WebDAV clients. We have
presented how LOBCDER, which provides a standardized access
protocol (WebDAV), may be integrated with the NEWQoSPlanner
that uses SDN to optimize data transfers. The selection of optimal
data sources introduces overhead and the degree to which the
performance of a data transfer is affected by this overhead depends
on the performance of the network, its size andnumber of available
data sources. If the size of the data to be transferred is small
with respect to the capacity of the link then searching for an
optimal path will not improve performance. Similarly, if size of
the network and number of resources to be considered is too
large, the overhead of finding a solution to the MSSP problem will
increase. Consequently, the solution presented here is intended
for RIs with several consumers and sources and for transfer of
large files. Avoiding the overhead for small file transfers is quite
trivial and can be taken into consideration by modifying Eq. (4)
with and an additional delaying factor. It is worth noticing that
during data transfers, our solution transparently adapts to network
traffic without any human intervention. It is achieved by taking
advantage of SDN and rerouting traffic through less loaded paths
and avoiding the influence of other applications using the network.
This strategy has no overhead in initiating the data transfer.

With the proposed architecture, the traffic load is balanced
between available resources. Introducing additional objectives
to the cost function enables to take into consideration issues
such as energy consumption and budget costs. More advanced
SDN techniques should be used to address the challenge of
discovering cross-domain network topologies and to provide
information and control for the bandwidth allocation policy. As
SDN technologies and approaches mature so will the reliability
accuracy and specifications of these systems. Several publications
such as [50] indicate that there is currently research done towards
that direction. Such an approach would have a positive impact on
big data disaster recovery [51,52].

Acknowledgments

We would like to thank Stavros Konstantaras for valuable
discussions and Daniel F.C. Romao for his help in deploying the
experimental topology on the ExoGENI testbed. We like to thank
Victor Chang (Leeds Beckett University UK) and the reviewers for
many valuable suggestions and recommendations. This work was
partly funded by the VPH-Share3 and COMMIT4 projects. Zhiming
Zhao acknowledges funding by ENVRIPLUS and SWITCH H2020
projects.

References

[1] P. Ayris, R.D.W. Group, et al. Leru roadmap for research data.
[2] A. Wöhrer, P. Brezany, I. Janciak, E. Mehofer, Modeling and optimizing

large-scale data flows, Future Gener. Comput. Syst. 31 (0) (2014) 12–27.
http://dx.doi.org/10.1016/j.future.2013.10.004. special Section: Advances in
Computer Supported Collaboration: Systems and Technologies.

[3] J. Faghmous, A. Banerjee, S. Shekhar, M. Steinbach, V. Kumar, A. Ganguly, N.
Samatova, Theory-guided data science for climate change, Computer 47 (11)
(2014) 74–78. http://dx.doi.org/10.1109/MC.2014.335.

[4] The human brain project (hbp), https://www.humanbrainproject.eu/, [Online;
accessed 4-December-2014] (2014).

[5] S. Benkner, C. Borckholder, M. Bubak, Y. Kaniovskyi, R. Knight, M. Koehler,
S. Koulouzis, P. Nowakowski, S. Wood, A cloud-based framework for
collaborative data management in the vph-share project, in: Advanced
Information Networking and Applications Workshops (WAINA), 2013 27th
International Conference on, IEEE, 2013, pp. 1203–1210.

[6] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, L. Alem, A platform for secure
monitoring and sharing of generic health data in the cloud, Future Gener.
Comput. Syst. 35 (0) (2014) 102–113.
http://dx.doi.org/10.1016/j.future.2013.09.011. special Section: Integration of
Cloud Computing and Body Sensor Networks; Guest Editors: Giancarlo Fortino
and Mukaddim Pathan.

[7] V. Chang, The business intelligence as a service in the cloud, Future Gener.
Comput. Syst. 37 (0) (2014) 512–534.
http://dx.doi.org/10.1016/j.future.2013.12.028. special Section: Innovative
Methods and Algorithms for Advanced Data-Intensive Computing Special
Section: Semantics, Intelligent processing and services for big data Special
Section: Advances in Data-Intensive Modelling and Simulation Special
Section: Hybrid Intelligence for Growing Internet and its Applications.

[8] R. Agarwal, G. Juve, E. Deelman, Peer-to-peer data sharing for scientific
workflows on amazon ec2, in: High Performance Computing, Network-
ing, Storage and Analysis (SCC), 2012 SC Companion, 2012, pp. 82–89.
http://dx.doi.org/10.1109/SC.Companion.2012.23.

[9] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, D. Chen, G-hadoop:
Mapreduce across distributed data centers for data-intensive computing, Fu-
ture Gener. Comput. Syst. 29 (3) (2013) 739–750.
http://dx.doi.org/10.1016/j.future.2012.09.001. special Section: RecentDevel-
opments in High Performance Computing and Security.

3 http://www.vph-share.eu/.
4 http://www.commit-nl.nl/

http://dx.doi.org/10.1016/j.future.2013.10.004
http://dx.doi.org/10.1109/MC.2014.335
https://www.humanbrainproject.eu/
http://refhub.elsevier.com/S0167-739X(15)00312-X/sbref5
http://dx.doi.org/10.1016/j.future.2013.09.011
http://dx.doi.org/10.1016/j.future.2013.12.028
http://dx.doi.org/10.1109/SC.Companion.2012.23
http://dx.doi.org/10.1016/j.future.2012.09.001
http://www.vph-share.eu/
http://www.commit-nl.nl/

S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76 75
[10] M.E. Vairavanathan, S. Al-Kiswany, A. Barros, L.B. Costa, H. Yang, G. Fedak, Z.
Zhang, D.S. Katz,M.Wilde, A case forworkflow-aware storage: An opportunity
study using mosastore, Submitted to FGCS Journal.

[11] R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, G. Antoniu, Jetstream:
Enabling high throughput live event streaming on multi-site clouds, Future
Gener. Comput. Syst. (0) (2015) –
http://dx.doi.org/10.1016/j.future.2015.01.016.

[12] A. Simonet, G. Fedak, M. Ripeanu, Active data: A programming model to
manage data life cycle across heterogeneous systems and infrastructures,
Future Gener. Comput. Syst. 53 (2015) 25–42.
http://dx.doi.org/10.1016/j.future.2015.05.015.

[13] A. Sim, A. Shoshani, The storage resource manager interface specification,
version 2.2, in: CERN, FNAL, JLAB, LBNL and RAL, Citeseer, 2007.

[14] T.I. Mandrichenko, W. Allcock, Gridftp v2 protocol description (May 2005).
[15] Cloud Data Management Interface, Tech. rep. (March 2010).
[16] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson, R. Mount, V.

Sarkar, V.White, D.Williams, Synergistic Challenges in Data-intensive Science
and Exascale Computing, DOE ASCAC Data Subcommittee Report, Department
of Energy Office of Science.

[17] M. Kluge, S. Simms, T. William, R. Henschel, A. Georgi, C. Meyer, M.S. Mueller,
C.A. Stewart, W. Wünsch, W.E. Nagel, Performance and quality of service of
data and video movement over a 100 gbps testbed, Future Gener. Comput.
Syst. 29 (1) (2013) 230–240. http://dx.doi.org/10.1016/j.future.2012.05.028.
including Special section: AIRCC-NetCoM2009 and Special section: Clouds and
Service-Oriented Architectures..

[18] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, S. Uhlig, Software-defined networking: A comprehensive survey, Proc.
IEEE 103 (1) (2015) 14–76. http://dx.doi.org/10.1109/JPROC.2014.2371999.

[19] A. Hakiri, A. Gokhale, P. Berthou, D.C. Schmidt, T. Gayraud, Software-defined
networking: Challenges and research opportunities for future internet,
Comput. Netw. 75 (2014) 453–471.
http://dx.doi.org/10.1016/j.comnet.2014.10.015. Part A (0).

[20] H. Farhady, H. Lee, A. Nakao, Software-defined networking: A survey, Comput.
Netw. 81 (0) (2015) 79–95. http://dx.doi.org/10.1016/j.comnet.2015.02.014.

[21] M. Shirazipour, Y. Zhang, N. Beheshti, G. Lefebvre, M. Tatipamula, Open-
flow and multi-layer extensions: Overview and next steps, European
Workshop on Software Defined Networking (EWSDN) 0 (2012) 13–17.
http://doi.ieeecomputersociety.org/10.1109/EWSDN.2012.22.

[22] Network service interface, http://forge.ogf.org/sf/projects/nsi-wg/, [Online;
accessed 1-July-2014] (2014).

[23] D. Kotani, K. Suzuki, H. Shimonishi, A design and implementation of openflow
controller handling ip multicast with fast tree switching, in: 2012 IEEE/IPSJ
12th International Symposium on Applications and the Internet, vol. 0, 2012,
pp. 60–67. http://doi.ieeecomputersociety.org/10.1109/SAINT.2012.17.

[24] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim, D. Yu, S. Bradley, S.
McKee, Stornet: Co-scheduling of end-to-end bandwidth reservation on stor-
age and network systems for high-performance data transfers, in: Computer
Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on,
2011, pp. 121–126. http://dx.doi.org/10.1109/INFCOMW.2011.5928792.

[25] B. Gibbard, D. Katramatos, D. Yu, Terapaths: End-to-end network path qos
configuration using cross-domain reservation negotiation, in: Broadband
Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd
International Conference on, 2006, pp. 1–9.
http://dx.doi.org/10.1109/BROADNETS.2006.4374426.

[26] R. Jones, D. Barberis, The atlas computing model, J. Phys. Conf. Ser. 119 (7)
(2008) 072020. http://stacks.iop.org/1742-6596/119/i=7/a=072020.

[27] S. Sharma, D. Katramatos, D. Yu, L. Shi, Design and implementation of an
intelligent end-to-end network qos system, in: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, IEEE Computer Society Press, Los Alamitos, CA, USA, 2012,
pp. 68:1–68:11. http://dl.acm.org/citation.cfm?id=2388996.2389089.

[28] L. Zuo, M. Zhu, Concurrent bandwidth reservation strategies for big data
transfers in high-performance networks, Network and Service Management,
IEEE Trans. PP Netw. Serv. Manag. (99) (2015) 1–1.
http://dx.doi.org/10.1109/TNSM.2015.2430358.

[29] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, P. Tran-Gia, Sdn-based application-
aware networking on the example of youtube video streaming, in: Software
Defined Networks (EWSDN), 2013 Second European Workshop on, 2013,
pp. 87–92. http://dx.doi.org/10.1109/EWSDN.2013.21.

[30] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, N. Race, Towards
network-wide qoe fairness using openflow-assisted adaptive video streaming,
in: Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-
centric Multimedia Networking, FhMN ’13, ACM, New York, NY, USA, 2013,
pp. 15–20. http://dx.doi.org/10.1145/2491172.2491181.

[31] G. Cofano, L. De Cicco, S. Mascolo, A control architecture for massive adaptive
video streaming delivery.

[32] X. Cheng, C. Dale, J. Liu, Statistics and social network of youtube videos,
in: Quality of Service, 2008. IWQoS 2008. 16th International Workshop on,
IEEE, 2008, pp. 229–238.

[33] Z. Yu, M. Li, X. Yang, X. Li, Palantir: Reseizing network proximity in large-
scale distributed computing frameworks using sdn, in: Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, 2014, pp. 440–447.
http://dx.doi.org/10.1109/CLOUD.2014.66.

[34] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, Design and
Implementation or the Sun Network Filesystem (1985).

[35] R. Hat, Glusterfs, http://www.gluster.org/, [Online; accessed 19-June-2015]
(2015).
[36] J.M. Lucas,M.S. Saccucci, R.V. Baxley Jr.,W.H.Woodall, H.D.Maragh, F.W. Faltin,
G.J. Hahn, W.T. Tucker, J.S. Hunter, J.F. MacGregor, T.J. Harris, Exponentially
weighted moving average control schemes: Properties and enhancements,
Technometrics 32 (1) (1990) 1–29. http://dx.doi.org/10.2307/1269835.

[37] M. Barbehenn, A note on the complexity of dijkstra’s algorithm for graphswith
weighted vertices, IEEE Trans. Comput. 47 (2) (1998) 263.
http://dx.doi.org/10.1109/12.663776.

[38] S. Koulouzis, D. Vasyunin, R. Cushing, A. Belloum, M. Bubak, Cloud data
federation for scientific applications, in: D. anMey,M. Alexander, P. Bientinesi,
M. Cannataro, C. Clauss, A. Costan, G. Kecskemeti, C. Morin, L. Ricci,
J. Sahuquillo, M. Schulz, V. Scarano, S. Scott, J. Weidendorfer (Eds.), Euro-Par
2013: Parallel Processing Workshops, in: Lecture Notes in Computer Science,
vol. 8374, Springer, Berlin Heidelberg, 2014, pp. 13–22.
http://dx.doi.org/10.1007/978-3-642-54420-0_2.

[39] Z. Zhao, C. Dumitru, P. Grosso, C. de Laat, Network resource control for
data intensive applications in heterogeneous infrastructures, in: Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International, 2012, pp. 2069–2076.
http://dx.doi.org/10.1109/IPDPSW.2012.243.

[40] S. Konstantaras, A. Oprescu, Z. Zhao, PIRE ExoGENI–ENVRI preparation for Big
Data science.

[41] Openstack-swift, https://wiki.openstack.org/wiki/Swift, [Online; accessed 18-
Mar-2015] (2015).

[42] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Tuecke, Gridftp:
Protocol extensions to ftp for the grid, Global Grid ForumGFD-RP 20.

[43] C. Dumitru, P. Grosso, C. de Laat, A user-centric execution environment
for cinegrid workloads, Future Gener. Comput. Syst. 53 (0) (2015) 55–62.
http://dx.doi.org/10.1016/j.future.2015.03.021.

[44] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, J. Vollbrecht, Network Services
Framework V1.0, Tech. Rep. GFD 173 (2010)
http://www.gridforum.org/documents/GFD.173.pdf.

[45] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, J. Chase, Exogeni: A
multi-domain infrastructure-as-a-service testbed, in: Testbeds and Research
Infrastructure, Development of Networks and Communities, Springer, 2012,
pp. 97–113.

[46] R. Koning, P. Grosso, C. de Laat, Using ontologies for resource description
in the cinegrid exchange, Future Gener. Comput. Syst. 27 (7) (2011)
960–965. http://dx.doi.org/10.1016/j.future.2010.11.027. cineGrid: Super
high definition media over optical networks..

[47] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, S. Shenker, Extending
networking into the virtualization layer, in: Hotnets, 2009.

[48] J.C. Jacob, D.S. Katz, G.B. Berriman, J. Good, A.C. Laity, E. Deelman, C. Kesselman,
G. Singh,M.-H. Su, T.A. Prince, R.Williams,Montage: A grid portal and software
toolkit for science-grade astronomical image mosaicking, Int. J. Comput. Sci.
Eng.

[49] Eso online digitized sky survey, http://archive.eso.org/dss/dss, [Online;
accessed 19-July-2015] (2015).

[50] F. Botelho, F. Valente Ramos, D. Kreutz, A. Bessani, On the feasibility of
a consistent and fault-tolerant data store for sdns, in: Software Defined
Networks (EWSDN), 2013 Second European Workshop on, 2013, pp. 38–43.
http://dx.doi.org/10.1109/EWSDN.2013.13.

[51] V. Chang, Towards a big data system disaster recovery in a private cloud, Ad.
Hoc. Netw. (2015) –
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012http://www.
sciencedirect.com/science/article/pii/S157087051500147X.

[52] S. Sengupta, K. Annervaz, Multi-site data distribution for disaster recovery —
A planning framework, Future Gener. Comput. Syst. 41 (2014) 53–64.
http://dx.doi.org/10.1016/j.future.2014.07.007.
http://www.sciencedirect.com/science/article/pii/S0167739X1400140X.

Spiros Koulouzis, has B.Sc. degree in Electronic Comput-
ing Systems conferred September 2004 by Technical Edu-
cational Institute of Piraeus. He received an M.Sc. degree
in Intelligent and Multi-Agent Systems conferred October
2006 by University ofWestminster andM.Sc. in Grid Com-
puting conferredMarch 2010 byUniversity of Amsterdam.
He is currently a Ph.D. candidate at the University of Ams-
terdam, and his research interests include distributed and
parallel systems.

Adam Belloum, is an Assistant Professor at the computer
science department of the University of Amsterdam. He
received the M.Sc. and Ph.D. degrees from the Compiegne
University of Technology, France.

http://dx.doi.org/10.1016/j.future.2015.01.016
http://dx.doi.org/10.1016/j.future.2015.05.015
http://dx.doi.org/10.1016/j.future.2012.05.028
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1016/j.comnet.2014.10.015
http://dx.doi.org/10.1016/j.comnet.2015.02.014
http://doi.ieeecomputersociety.org/10.1109/EWSDN.2012.22
http://forge.ogf.org/sf/projects/nsi-wg/
http://doi.ieeecomputersociety.org/10.1109/SAINT.2012.17
http://dx.doi.org/10.1109/INFCOMW.2011.5928792
http://dx.doi.org/10.1109/BROADNETS.2006.4374426
http://stacks.iop.org/1742-6596/119/i=7/a=072020
http://dl.acm.org/citation.cfm?id=2388996.2389089
http://dx.doi.org/10.1109/TNSM.2015.2430358
http://dx.doi.org/10.1109/EWSDN.2013.21
http://dx.doi.org/10.1145/2491172.2491181
http://refhub.elsevier.com/S0167-739X(15)00312-X/sbref32
http://dx.doi.org/10.1109/CLOUD.2014.66
http://www.gluster.org/
http://dx.doi.org/10.2307/1269835
http://dx.doi.org/10.1109/12.663776
http://dx.doi.org/10.1007/978-3-642-54420-0_2
http://dx.doi.org/10.1109/IPDPSW.2012.243
https://wiki.openstack.org/wiki/Swift
http://dx.doi.org/10.1016/j.future.2015.03.021
http://www.gridforum.org/documents/GFD.173.pdf
http://refhub.elsevier.com/S0167-739X(15)00312-X/sbref45
http://dx.doi.org/10.1016/j.future.2010.11.027
http://refhub.elsevier.com/S0167-739X(15)00312-X/sbref47
http://archive.eso.org/dss/dss
http://dx.doi.org/10.1109/EWSDN.2013.13
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://www.sciencedirect.com/science/article/pii/S157087051500147X
http://dx.doi.org/10.1016/j.future.2014.07.007
http://www.sciencedirect.com/science/article/pii/S0167739X1400140X

76 S. Koulouzis et al. / Future Generation Computer Systems 56 (2016) 64–76
Marian Bubak, has M.Sc. degree in Technical Physics
and Ph.D. in Computer Science. He is an adjunct at
the Department of Computer Science and Cyfronet, AGH
University of Science and Technology, Krakow, Poland,
and a Professor of Distributed System Engineering at the
University of Amsterdam.

Zhiming Zhao obtained his PhD in computer science
in 2004 from University of Amsterdam (UvA). He is
currently a senior researcher in the System and Network
Engineering group at UvA. He coordinates research
effort on quality critical systems on programmable
infrastructures in the context of European H2020 projects
of SWTICH and ENVRIPLUS. His research interests include
software defined networking, workflow management
systems, multi agent system and big data research
infrastructures.
Miroslav Zivkovic received the engineering degree in
electronics and telecommunications from the Faculty of
Electrical Engineering, University of Belgrade, Serbia, and
his PhD degree from University of Twente, The Nether-
lands. From 1999 till 2008 he was with Bell Labs, Alca-
tel–Lucent, The Netherlands, where he contributed to the
area of dynamic spectrum management for DSL systems,
intelligent service platforms and security solutions for the
next generation networking. In 2008 he joined TNO, The
Netherlands, where he was mainly involved in perfor-
mance analysis of service oriented architecture systems

and composite web services. Since 2013 he is with System and Network Engineer-
ing (SNE) group, Institute for Informatics, University of Amsterdam (UvA), where he
works on different aspects of Software—Defined Networks and data centre infras-
tructures.

Prof. Dr. Ir. Cees de Laat is chair of the System and Net-
work Engineering research group at the University of Am-
sterdam. Research in his group includes optical/switched
Internet for data-transport in TeraScale eScience applica-
tions, Semantic web to describe networks and associated
resources, distributed cross organizationAuthorization ar-
chitectures and Systems Security privacy of information
in distributed environments. He serves as at Large mem-
ber of the Board of Directors in Open Grid Forum and is
acting co-chair of the Grid High Performance Networking
Research Group (GHPN-RG), is chair of GridForum.nl and

boardmember of ISOC.nl. He is co-founder and organizer of several of the pastmeet-
ings of the Global Lambda Integrated Facility (GLIF) and founding member of Cine-
Grid.org.

	SDN-aware federation of distributed data
	Introduction
	Related work
	Network model
	Integration of SDN and DFAS
	Architecture requirements
	LOBCDER
	NEWQoSPlanner
	SDN-Aware DFAS

	Experimental setup
	Virtual test environment
	Evaluation scenarios
	I/O intensive workflow

	Performance evaluation
	Scenario 1: Optimal worker selection
	Scenario 2: Dynamic worker selection
	Scenario 3: Dynamic traffic routing
	I/O intensive workflow

	Conclusions and future work
	Acknowledgments
	References

