
Towards an Environment Supporting Resilience,
High-Availability, Reproducibility and Reliability for

Cloud Applications
Vlado Stankovski, Salman Taherizadeh

University of Ljubljana
Ljubljana, Slovenia

Ian Taylor, Andrew Jones
Cardiff University

Cardiff, United Kingdom

Carlo Mastroianni
Italian National Research Council

Cosenza, Italy

Bruce Becker
Council for Scientific and Industrial Research

Pretoria, South Africa

Heru Suhartanto
Universitas Indonesia

Jakarta, Indonesia

Abstract—This paper presents a design study of an
environment that would provide for resilience, high-availability,
reproducibility and reliability of Cloud-based applications. The
approach involves the use of a resilient container overlay, which
provides tools for tracking and optimizing container placement
during the course of a scientific experiment execution. The
system is designed to detect failure and current performance
bottlenecks and be capable of migrating running containers on
the fly to servers more optimal for their execution. This work is
in the design phase and therefore in this paper, we outline the
proposed architecture of system and identify existing container
management and migration tools that can be used in the
implementation, where appropriate.

Index Terms—Cloud, containers, resilience, high-availability.

I. INTRODUCTION

The Software as a Service (SaaS) approach, as well as
distributed computation and computational pipelines, are
routinely used in most scientific disciplines to provide a
systematic mechanism for describing the science that needs to
be performed and how. With the drastic increase of raw data
volume in every domain, Cloud computing plays an
increasingly critical role to assist scientists in organizing and
processing their data, and to leverage High-Performance
Computing (HPC) and High-Throughput Computing (HTC)
resources. The same applies to business applications involving
long-running transactions or serving many end-users or
devices. The lifecycle of such widely used Cloud applications
requires management techniques which cover a range of
aspects relating to the creation and execution of jobs, such as
resource discovery and mapping, scheduling, monitoring,
logging, provenance, etc. Such algorithms generally assume

there is a reasonably stable infrastructure in which dealing with
failures is an exception, not the rule. In this work we aim to
address some user requirements that are difficult to satisfy due
to the inherent instability of infrastructures, and we are
particularly motivated by the problems which arise in
developing countries, where instability is sometimes
particularly severe.

This instability can be caused by a number of issues, such
as component failures, power outages and Internet outages. If
an imminent failure is suspected, the potential problem should
be resolved, instead of the application being disrupted. This
means that Cloud-based applications must be resilient.
Resilience is the ability of a server, network, storage system, or
an entire data center to continue operating even when there has
been an equipment failure, power outage or other disruption.
Resilience, in fact, should be the underpinning of any
distributed system, as Tanenbaum [1] emphasises: “a
distributed system is a collection of independent computers that
appears to its users as a single coherent system … and should
be permanently available (even though parts of it may not be)”.

Tools and technologies are therefore needed to allocate and
manage computing resources dynamically, making it possible
to maintain and restore a desired level of Quality of Service
(QoS) when failures occur. To achieve resilience, it is
necessary to distribute redundant implementations of
computing and storage resources across physical locations.
Computing and storage resources need to be pre-configured, so
that if one computing process becomes deficient, the
processing can be automatically continued at another redundant
computing resource.

End-user QoS requirements can include processing time
(especially in the case of long-running scientific experiments),

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-1-4503-3890-5/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.61

383

2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

978-0-7695-5697-0/15 $31.00 © 2015 IEEE

DOI 10.1109/UCC.2015.61

383

downtime in cases of outages, latency, reliability, business
continuity, and so on. The end-user QoS requirements vary
considerably, depending on the characteristics of the
applications. Accordingly, a rigorous QoS methodology is
required when deciding upon the optimal allocation of
resources, which can be achieved through extensive profiling
of use cases and applications.

While resilience is a property of the Cloud system, which is
mainly sought by Cloud providers, end-users’ requirements
frequently also include the following:

• Availability is the degree to which a service is
operable; that is, capable of producing responses to
submitted requests. Stronger definitions of availability
(e.g. high-availability) may include constraints with
regard to the time window allowed for any response to
arrive, or the time window allowed for the system not
to be operable (e.g. relevant for business applications
involving many transactions).

• Reproducibility is the ability of a computational
experiment to be reproduced, either by the researcher
or by someone else working independently. This is
another property of distributed applications that is
frequently required also by researchers in developing
countries, as much as anywhere else, but it is made
difficult by the instability of their systems.

• Reliability is a property where applications
consistently perform according to their specifications.
In the context of a long-running application, this means
that both its QoS requirements and its computational
integrity are satisfied.

Not being able to satisfy these key requirements may result
in significant financial consequences, impacting customer trust
in the applications they use, and impacting the application
providers’ trust in the Cloud services upon which they rely.

Our aim is therefore to address the basic instability of
Cloud services that can be caused by problems such as
component failures in highly distributed environments,
frequent power outages and Internet outages. Our goal is to
provide an overall architecture along with a set of open source
tools that contribute to resilience, high-availability,
reproducibility and reliability of Cloud-based services.

II. CONCEPT AND APPROACH

The term virtualization was first coined in the 1960s to
refer to the use of Virtual Machines (VMs). Today,
virtualization is understood by many as a common name for
Cloud computing technology, and it can be achieved both
through the use of VMs and containers. Key techniques for
achieving resilience in Cloud computing environments include
checkpointing, migration and replication [2]. Here, we plan to
develop an architecture within which these techniques are
combined effectively to maintain QoS. Although the overhead
for these techniques is often undesirable when the resources
and infrastructure are sufficiently reliable, in the context of our
present work, replication is an important technique for
mitigating the kinds and extent of failure encountered in highly
distributed systems.

The key concept is to provide a virtual overlay over
existing Clouds to enable mobility for long running jobs and to
sustain resilient execution, through the use of previously-
mentioned resilience techniques, in order to make efficient use
of the underlying computational resources as and when they
are available. At the crux of this architecture, we will use
containers to provide a lightweight mechanism for deploying
applications and moving them within and between Clouds; the
more traditional Virtual Machine-based techniques are too
heavyweight to achieve the agility we require. The next section
will provide the rationale for this approach. We will then
explain the proposed architecture, first describing why a
component-oriented, microservice-based architecture will
provide the flexibility we require, and then describing the high-
level architecture in more detail. Within this architecture, some
of the components will be specifically container-related, while
others will be Cloud-related; we enumerate these in the
following sections. In addition, there needs to be a way in
which users can interact effectively with this system; we
outline requirements for a Dashboard that will provide this
facility. A testbed will be needed, and we outline what this will
provide.

III. HIGH LEVEL ARCHITECTURE

Our aim is to take advantage of the existing global
technologies. This architecture is specifically designed as a
means of achieving resilient operation of federated,
heterogeneous Clouds, and will use Open Source solutions
wherever possible.

The architecture will be realised at several levels: tools and
services at the different levels of container, Cloud and end-user
tools, which can be used from the Web. Before we provide an
overview of the components in more detail in the following
subsections, we first provide a snapshot of the underlying
strategy. Cloud applications will provide their application code,
their data and their QoS requirements. Then we will broadly
proceed through the following steps:

• The code for the application will be containerised, i.e.
a container (with preloaded tools) will be extended to
include all of the libraries required for the target
application and the application itself.

• The application dataset, which for long running
applications is typically very large, will be hosted on a
scalable distributed storage and retrieval system, which
is a key backbone of the middleware stack. This
dataset will be therefore accessible from any container
on the network.

• The resulting container will be deployed in the
container hub, ready for use. It will also be made
available through the dashboard to the user for
configuration and execution.

• The QoS parameters will be attached to the
application, using the dashboard, at which point the
application is ready to execute.

• Once running, the checkpoint scheduler will schedule
both file system (using the hub) and live running

384384

checkpoints (using the data repository) to checkpoint
within the QoS constraint interval.

• Upon the detection of a failure, the Live Migration tool
will check for the last memory and file-system
checkpoint and provision a different server to run a
container using this last checkpointed state. It will then
inform the backend DB of this update so the user can
track the migrated application.

• The live migration tool (if the user chooses) can also
notify the user of this failure and request permission to
move the application before migrating to a new
container.

A. Container-related components
In many research experiments, it is necessary to save the

state of multiple processes in order to be able to restore them
later on the same or different host. To accomplish this, an
application checkpointing and migration mechanism is needed
that is capable of migrating applications from one host that
may become disconnected from the network, to another host
that can continue where it left off. Migration can also be used
to improve availability by evacuating applications to new
locations before host maintenance so that they continue to run
with minimal downtime. Some in-container mechanisms like
CRIU (Checkpoint/Restore In Userspace) [3] could be used in
this process, since CRIU provides the capability to migrate live
Linux containers. In-container tools could play the role of an
agent that pushes information out to a service that maintains
QoS by appropriate replication, etc.

The functionalities that will be implemented at container-
level include the following: (1) live checkpointing (e.g. CRIU)
for snapshotting the memory. To determine checkpoint
frequency, QoS constraints will be used from the Cloud
applications side; (2) interfaces for applications to snapshot
themselves (i.e. write files out periodically according to their
own QoS requirements); (3) introspection facilities, so that
containers can report state (e.g. to the dashboard), reconfigure
themselves, etc.; (4) mechanisms to create and store snapshots
of multi-container configurations. The nature of this
functionality is more static than the previous functionalities.

B. Cloud related components
In situations when an application is unreachable or

unresponsive, it is necessary to save the container’s file system
along with the state of given container (all the processes and
their resources) into disk files; then the files are copied to
another server; and the container finally is restarted. A
checkpointing mechanism can minimize the amount of lost
computation when such migration occurs. Accordingly, we will
design a container tracking and migration tool that is capable of
tracking containers, and periodically storing a snapshot of the
file system and its state, so that any application can resume
from its last saved checkpoint. In other words, we will develop
a process of checkpointing and restarting which makes it
possible to move a running application (in a container) from
one server to another without a reboot and recommencement
from the beginning of the computation. The underlying goal is
to provide a virtual overlay over existing Clouds which will

provide mobility for long running jobs to sustain resilient
execution, through the use of dynamic checkpointing and
migration, in order to make efficient use of the underlying
computational resources as and when they are available. As far
as possible, the operation of this virtual overlay will be
transparent to the user, so that details of its operation will be
visible and controllable on demand, but under normal
circumstances the computation will proceed automatically
towards completion, without user intervention, regardless of
failures and outages. The following components are required:

• Checkpoint Scheduler is an asynchronous process for
scheduling checkpoints for each application. It receives
pushes from containers for memory snapshots and
periodically snapshots containers - e.g. it can use the
Docker commit operation to snapshot a Docker
container to a Docker hub;

• Container Hub is a repository, e.g. Docker hub, for
interfacing with the container implementation for
taking snapshots;

• Container Repository is a library of pre-built
containers for specific applications;

• Data Repository exposes a REST API for storing
memory snapshots from containers. This component
creates a “time machine” view of the container
snapshots and then allows an application to restart at
any point along the snapshot continuum;

• Live Migration Service queries the data repository to
find current running instances and timestamps. If a
timestamp indicates that there is failure to satisfy the
QoS specified for that particular application instance,
the application will be migrated from the last known
snapshot and will be moved elsewhere to continue
execution;

• Distributed file system that allows applications on
containers to interact with large data sets, etc. This also
needs to be resilient, like the containers. Many
distributed file system implementations already exist,
e.g. iRODS [4], which potentially meet our
requirements. Interaction with distributed storage
infrastructures such as EUDAT is also possible.

C. Dashboard-related components
A Web-based Dashboard will be provided, which will

allow users to interact with and monitor the real-time
availability of their applications and the underlying Cloud
infrastructure. Availability metrics will be sent to a dashboard
to display dynamic real-time information on the state of the
application. When failure occurs, the dashboard can interface
with users in cases where any decision-making is required. The
dashboard will be capable of visualising how the applications
are working, present notifications to inform users that
something failed, and provide options for configuring and
supporting software migration, and so on. The Dashboard is
therefore essentially a gateway to online provider tools and
resources. It will model and assess the overall availability of
the Cloud infrastructure. Practically, the dashboard will
provide a comprehensive view of IT infrastructure and services

385385

with respect to multiple management aspects, based upon an
evaluation of multiple resources including servers, storage,
networking, power, etc.

The Dashboard will include the following tools and
features:

• user accounts for authorization and authentication,
allowing users’ role-based access to the system;

• an application submission interface;
• an application instance timeline for monitoring

progress;
• inspection/monitoring/access of the running containers

to enable users to view the application output in real-
time (e.g. using a command style dashboard widget),
log into a running container; visualise application state,
and to provide a remote desktop to the container,
depending on requirements;

• a time machine mechanism to allow the user to go
back to any snapshot, log in and inspect the application
state at that time. This helps to identify any execution
issues at various stages;

• mechanisms and interfaces exposed for notifying the
application authors when something has happened, e.g.
to give them the opportunity to control the migration
process;

• monitoring views of the applications e.g. CPU, load,
disk space, etc. of the running container.

D. Technical Issues
Given the types of Cloud applications for which resilience

and high availability must be provided, a number of issues at a
technical level will be investigated as follows.

• When to migrate containers. Live migration of
containers from unreachable or unstable servers to
provide resilient Cloud services is a fundamental goal.
A crucial decision that must be made in this situation
relates to determining the best time to migrate
containers to maximise resilience, while still providing
high availability.

• Which containers to migrate. Once a decision to
migrate containers from a server is made, one or more
containers must be selected from the full set of
containers running on one server, to be migrated and
reallocated on a new server. The problem consists of
determining the best subset of containers to migrate
that will provide the most beneficial system
reconfiguration.

• Where to migrate the containers selected for migration,
and where to place new containers. Determining the
best placement of new containers or the containers
selected for migration to other servers is another
essential aspect that must be considered by the system.

• How to minimise time to migrate and place a
container. Rapid migration is needed in order to
minimise delays.

• Number of checkpointing intervals. One of our
challenges is to compute the optimal number of
checkpointing intervals in the context of Cloud

computing for minimizing the inevitably extremely
large size of collective memory usage, when we set
equidistant checkpoints. Both the QoS limits and
underlying physical limitations of the networks must
be included in this calculation.

• Checkpoint image size. The solution will build highly
specific and highly optimised container images tuned
for minimal size and management overhead. This is
important because actual memory usage is one of the
performance requirements.

• Which metrics to monitor. A monitoring tool will
collect resource usage data including throughput,
response time, application, power, cooling and so on.
This information must then be processed (filtered,
converted, aggregated, etc.) to generate availability
metrics using a set of availability models.

IV. CONCLUSIONS

The pilot Cloud applications that are to be made resilient by
using the environment rely strongly on the Software-as-a-
Service (SaaS) delivery model. The SaaS approach is currently
used extensively in research, education and business purposes.

Over the past several years, resilience has become a major
issue in distributed high-performance systems, especially in the
wake of large Petascale systems and future Exascale ones.
With millions of CPU cores running billions of threads,
Exascale systems are highly likely to experience a number of
faults many times per day. Current approaches to resilience are
built for homogeneous Clouds, so to perform automatic or
application level checkpoint-restart will not work because of
the incompatibilities between the underlying migration
mechanisms and security infrastructures that surround them.
This reality leaves the application community with a difficult
challenge: to find new approaches successfully to run
applications until their normal termination despite the
essentially unstable nature and heterogeneity of the Cloud
resources available regionally and nationally. We intend to
addresses these issues by taking a structured, pragmatic
approach to innovate and contribute to the community in a
number of innovative ways.

ACKNOWLEDGMENT

This project has received funding from the European
Union's Horizon 2020 research and innovation programme
under grant agreement No 643963 (SWITCH project).

REFERENCES

[1] Tanenbaum, A and Van Steen, M: Distributed Systems,
Principles and Paradigms, Prentice-Hall, 2002.

[2] Kalyan, R. and Kumar, A.: "Trends towards Failover
Techniques for Cloud Computing Environment",International
Journal of Advanced Research in Computer Science and
Software Engineering, Volume 5, Issue 1, January 2015.

[3] CRIU team, "Checkpoint/Restore In Userspace", http://criu.org/,
visited September 2015.

[4] iRODS, "Integrated Rule-Oriented Data System",
http://www.irods.org/, visited September 2015.

386386

